题名 | Atomic-Scale Laminated Structure of O-Doped WS2 and Carbon Layers with Highly Enhanced Ion Transfer for Fast-Charging Lithium-Ion Batteries |
作者 | |
通讯作者 | Han, Meisheng; Yu, Jie |
共同第一作者 | Li, Zhenwei; Yuan, Fu |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 1613-6810
|
EISSN | 1613-6829
|
卷号 | 18期号:27 |
摘要 | WS2 anode materials show huge potential for fast-charging lithium-ion batteries (LIBs) due to the naturally good 2D diffusion pathways but suffer from large Li+ diffusion barrier energy and poor intrinsic electrical conductivity. Here, a defect-rich atomic-scale laminated structure of WS2 and C (D-WS2-C) with O doping and enlarged interlayer distance from 0.62 to 1.06 nm of WS2 is first fabricated, which is assembled into micron-sized spheres to prepare WS2/C composite microspheres. D-WS2-C with maximized molecular layer contact area between WS2 and carbon and large interlayer spacing greatly enhances the electrical conductivity of WS2 and reduces Li-ion diffusion energy barrier, confirmed by density functional theory calculations. Besides, the unique D-WS2-C enables the formation of vast superfine W nanoparticles (1-2 nm) during the conversation reaction, resulting in the construction of a space charge zone on W surface. Based on these characteristics of D-WS2-C, the prepared WS2/C composite microspheres show superior fast-charging capability with a high capacity of 647.8 mAh g(-1) at 20 C in half cells. For full cells, a high-energy density of 100.9 Wh kg(-1) is achieved at a charge time of only 8.5 min at 5 C, representing the best fast-charging performances in WS2-based anode materials to date. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2020A1515110762]
; National Natural Science Foundation of China[52172084]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000806730400001
|
出版者 | |
EI入藏号 | 20222312196825
|
EI主题词 | Anodes
; Carbon
; Charging (Batteries)
; Density Functional Theory
; Diffusion Barriers
; Electric Conductivity
; Ions
; Laminating
; Lithium-ion Batteries
; Microspheres
|
EI分类号 | Electricity: Basic Concepts And Phenomena:701.1
; Secondary Batteries:702.1.2
; Electron Tubes:714.1
; Chemical Products Generally:804
; Processing Of Plastics And Other Polymers:816.1
; Probability Theory:922.1
; Atomic And Molecular Physics:931.3
; Quantum Theory
; Quantum Mechanics:931.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:25
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/336157 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Songshan Lake Mat Lab Dongguan, Adv Fibers Grp, Dongguan 523808, Guangdong, Peoples R China 2.Harbin Inst Technol, Shenzhen Engn Lab Supercapacitor Mat, Shenzhen Key Lab Adv Mat, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China |
通讯作者单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Li, Zhenwei,Yuan, Fu,Han, Meisheng,et al. Atomic-Scale Laminated Structure of O-Doped WS2 and Carbon Layers with Highly Enhanced Ion Transfer for Fast-Charging Lithium-Ion Batteries[J]. Small,2022,18(27).
|
APA |
Li, Zhenwei,Yuan, Fu,Han, Meisheng,&Yu, Jie.(2022).Atomic-Scale Laminated Structure of O-Doped WS2 and Carbon Layers with Highly Enhanced Ion Transfer for Fast-Charging Lithium-Ion Batteries.Small,18(27).
|
MLA |
Li, Zhenwei,et al."Atomic-Scale Laminated Structure of O-Doped WS2 and Carbon Layers with Highly Enhanced Ion Transfer for Fast-Charging Lithium-Ion Batteries".Small 18.27(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Small - 2022 - Li - (7499KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论