中文版 | English
题名

Geodesic Completeness of Regular Black Holes

其他题名
非奇异黑洞的测地完备性
姓名
姓名拼音
ZHOU Tian
学号
11930538
学位类型
硕士
学位专业
070201 理论物理
学科门类/专业学位类别
07 理学
导师
Leonardo Modesto
导师单位
物理系
论文答辩日期
2022-05-16
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

To solve the singularity issue in Einstein’s general relativity(GR), many regular black hole (RBH) solutions have been proposed. We here focus on the singularity problem for RBHs. The curvature singularity does not exist in RBHs but the geodetical completion, the usual definition of regular spacetimes, may not hold. Thus, we have to investigate the geodesic completeness of RBH solutions. The Hayward metric has a de-Sitter core so 𝑟 = 0 is no longer a curvature singularity. We compute the proper time to reach 𝑟 = 0 for radial geodesics and found that particles with enough energy can reach 𝑟 = 0 in finite proper time. Therefore, we are forced to extend the Hayward metric to 𝑟 < 0, until arriving at the Schwarzchild-like singularity 𝑟 = −𝐿. And it is easy to show that geodesics reach the singularity in finite proper time so the maximally extended Hayward spacetime is geodesically incomplete. We then study the generalized Hayward metric and found that the geodesic completeness depends on the metric function. Similarly, other black holes with de-Sitter cores, such as the Nicolini black hole, Lee-Wick black hole, Bardeen’s black hole, and the black hole from loop quantum gravity are also geodesically complete. But Visser’s black hole with a Minkowski core is not geodesically complete since the metric is ill-defined in the limit 𝑟 → 0−, even though the curvature is regular at 𝑟 = 0. For the renormalization-group-inspired black holes, the geodesic completeness is up to the parameter 𝛾. Nevertheless, even though many regular black holes are geodesically complete, the spacetimes are not stable because of the multi-horizon structure.

Then, we show that conformal symmetry is a great idea to solve the singularity problem. In this way, the spacetime metric cannot be the solution of GR but a conformally rescaled metric. The reselecting of the conformal gauge can make singular spacetime to be geodesically complete. Conformal transformation does not change the causal structure so there is no new horizon caused, which makes spacetime unstable. We demonstrate that the conformal rescaled spherically symmetric metric, such as the Schwarzchild metric, can be geodetically complete for massless, massive, and conformal-coupled particles. Afterward, we show that we always can choose a conformal gauge to ensure the spacetime completion of massless, massive, and conformally coupled particles for general metrics with some causal conditions.

关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Hawking S W, Ellis G F R. The large scale structure of space-time[M]. Cambridge University Press, 1973.
[2] Penrose R. Gravitational collapse and space-time singularities[J]. Physical Review Letters, 1965, Vol: 14(3).
[3] Hawking S W, Penrose R. The singularities of gravitational collapse and cosmology[J]. Proceedings of the Royal Society of London, 1970, 314(1519): 529-548.
[4] Ashtekar A. New Variables for Classical and Quantum Gravity[J/OL]. Phys. Rev. Lett., 1986, 57: 2244-2247. DOI: 10.1103/PhysRevLett.57.2244.
[5] Rovelli C, Smolin L. Loop Space Representation of Quantum General Relativity[J/OL]. Nucl. Phys. B, 1990, 331: 80-152. DOI: 10.1016/0550-3213(90)90019-A.
[6] Rovelli C. Loop quantum gravity[J/OL]. Living Rev. Rel., 1998, 1: 1. DOI: 10.12942/lrr-199 8-1.
[7] Brans C, Dicke R H. Mach’s principle and a relativistic theory of gravitation[J/OL]. Phys. Rev., 1961, 124: 925-935. DOI: 10.1103/PhysRev.124.925.
[8] Stelle K S. Renormalization of Higher Derivative Quantum Gravity[J/OL]. Phys. Rev. D, 1977, 16: 953-969. DOI: 10.1103/PhysRevD.16.953.
[9] Hawking S W, Hertog T. Living with ghosts[J/OL]. Phys. Rev. D, 2002, 65: 103515. DOI: 10.1103/PhysRevD.65.103515.
[10] Mannheim P D. Ghost problems from Pauli-Villars to fourth-order quantum gravity and their resolution[J/OL]. Int. J. Mod. Phys. D, 2020, 29(14): 2043009. DOI: 10.1142/S02182718204 30099.
[11] Donoghue J F, Menezes G. Arrow of Causality and Quantum Gravity[J/OL]. Phys. Rev. Lett., 2019, 123(17): 171601. DOI: 10.1103/PhysRevLett.123.171601.
[12] Asorey M, Lopez J L, Shapiro I L. Some remarks on high derivative quantum gravity[J/OL]. Int. J. Mod. Phys. A, 1997, 12: 5711-5734. DOI: 10.1142/S0217751X97002991.
[13] Modesto L, de Paula Netto T, Shapiro I L. On Newtonian singularities in higher derivative gravity models[J/OL]. JHEP, 2015, 04: 098. DOI: 10.1007/JHEP04(2015)098.
[14] Cornish N J. Quantum nonlocal gravity[J/OL]. Mod. Phys. Lett. A, 1992, 7: 631-640. DOI: 10.1142/S0217732392000604.
[15] Kuzmin Y V. THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN)[J]. Sov. J. Nucl. Phys., 1989, 50: 1011-1014.
[16] Tomboulis E T. Superrenormalizable gauge and gravitational theories[J]. 1997.
[17] Modesto L. Super-renormalizable Quantum Gravity[J/OL]. Phys. Rev. D, 2012, 86: 044005. DOI: 10.1103/PhysRevD.86.044005.
[18] Modesto L, Rachwal L. Nonlocal quantum gravity: A review[J/OL]. Int. J. Mod. Phys. D, 2017, 26(11): 1730020. DOI: 10.1142/S0218271817300208.
[19] Modesto L, Moffat J W, Nicolini P. Black holes in an ultraviolet complete quantum gravity[J]. Physics Letters B, 2011.
[20] Biswas T, Gerwick E, Koivisto T, et al. Towards singularity and ghost free theories of gravity[J/OL]. Phys. Rev. Lett., 2012, 108: 031101. DOI: 10.1103/PhysRevLett.108.031101.
[21] Anselmi D, Marino A. Fakeons and microcausality: light cones, gravitational waves and the Hubble constant[J/OL]. Class. Quant. Grav., 2020, 37(9): 095003. DOI: 10.1088/1361-6382/ ab78d2.
[22] Koshelev A S, Modesto L, Rachwal L, et al. Occurrence of exact 𝑅2 inflation in non-local UV-complete gravity[J/OL]. JHEP, 2016, 11: 067. DOI: 10.1007/JHEP11(2016)067.
[23] Hooft G t. The conformal constraint in canonical quantum gravity[J]. Physics, 2012.
[24] Hooft G t. Singularities, horizons, firewalls, and local conformal symmetry[J]. 2015.
[25] Zee A. Einstein gravity emerging from quantum Weyl gravity[J/OL]. Annals of Physics, 1983, 151: 431-443. DOI: 10.1016/0003-4916(83)90286-5.
[26] D. Making the case for conformal gravity[J/OL]. Foundations of Physics - FOUND PHYS, 2011, 42. DOI: 10.1007/s10701-011-9608-6.
[27] Modesto L, Rachwal L. Finite conformal quantum gravity and spacetime singularities[J]. Journal of Physics Conference, 2017, 942(1): 012015.
[28] Li Q, Modesto L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[29] Modesto L, Zhou T, Li Q. Geometric origin of the galaxies’ dark side[J]. 2021.
[30] Lauscher O, Reuter M. Ultraviolet fixed point and generalized flow equation of quantum gravity[J/OL]. Phys. Rev. D, 2002, 65: 025013. DOI: 10.1103/PhysRevD.65.025013.
[31] Lauscher O, Reuter M. Is quantum Einstein gravity nonperturbatively renormalizable?[J/OL]. Class. Quant. Grav., 2002, 19: 483-492. DOI: 10.1088/0264-9381/19/3/304.
[32] Weinberg S. Ultraviolet divergences in quantum theories of gravitation[M]. Cambridge University Press, 1979: In General Relativity: An Einstein centenary survey: 790-831.
[33] Draper T, Knorr B, Ripken C, et al. Finite Quantum Gravity Amplitudes: No Strings At- tached[J/OL]. Phys. Rev. Lett., 2020, 125(18): 181301. DOI: 10.1103/PhysRevLett.125.18 1301.
[34] Hayward S A. Formation and evaporation of non-singular black holes[J]. Physical Review Letters, 2006, 96(3): 031103.
[35] Bambi C, Modesto L, Wang Y. Lee-wick black holes[J]. Physics Letters B, 2017, 764: 306-309.
[36] Simpson A, Visser M. Regular black holes with asymptotically Minkowski cores[J]. 2019.
[37] Modesto L, Prémont-Schwarz I. Self-dual black holes in loop quantum gravity: Theory and phenomenology[J]. Physical Review D, 2010, 49: 1649-1683.
[38] Modesto L. Space-time structure of loop quantum black hole[J]. International Journal of Theoretical Physics, 2009, 80(6): 064041.
[39] Bonanno A, Reuter M. Renormalization group improved black hole spacetimes[J]. Phys.rev.d, 2000, 62(4): 043008.
[40] Bonanno A, Reuter M. Spacetime structure of an evaporating black hole in quantum gravity[J]. Physical Review D Particles & Fields, 2006, 73(8): 192-194.
[41] Poisson E, Israel W. Internal structure of black holes[J/OL]. Phys. Rev. D, 1990, 41: 1796-1809. DOI: 10.1103/PhysRevD.41.1796.
[42] Ori A. Inner structure of a charged black hole: An exact mass-inflation solution[J/OL]. Phys. Rev. Lett., 1991, 67: 789-792. DOI: 10.1103/PhysRevLett.67.789.
[43] Carballo-Rubio R, Di Filippo F, Liberati S, et al. Geodesically complete black holes[J/OL]. Phys. Rev. D, 2020, 101: 084047. https://link.aps.org/doi/10.1103/PhysRevD.101.084047.
[44] V. Naelikar J, K. Kembhavi A. Space-time singularities and conformal gravity[J/OL]. Lettere Al Nuovo Cimento Series 2, 1977, 19: 517-520. DOI: 10.1007/BF02748215.
[45] Narlikar J V. The vanishing likelihood of space-time singularity in quantum conformal cosmology[J]. Foundations of Physics, 1984, 14(5): 443-456.
[46] Bambi C, Modesto L, Rachwał L. Spacetime completeness of non-singular black holes in conformal gravity[J]. Journal of Cosmology and Astro-Particle Physics, 2016, 5(5): 003-003.
[47] Clarke C J S. On the geodesic completeness of causal space-times[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1971, 69(2): 319-323.
[48] Beem J K. Conformal changes and geodesic completeness[J]. Communications in Mathematical Physics, 1976, 49(2): 179-186.
[49] Modesto L, Shapiro I L. Superrenormalizable quantum gravity with complex ghosts[J/OL]. Phys. Lett. B, 2016, 755: 279-284. DOI: 10.1016/j.physletb.2016.02.021.
[50] Calcagni G, Modesto L. Nonlocal quantum gravity and M-theory[J/OL]. Phys. Rev. D, 2015, 91(12): 124059. DOI: 10.1103/PhysRevD.91.124059.
[51] Calcagni G, Modesto L, Nardelli G. Initial conditions and degrees of freedom of non-local gravity[J/OL]. JHEP, 2018, 05: 087. DOI: 10.1007/JHEP05(2018)087.
[52] Bardeen J. Abstracts of the 5th international conference on gravitation and the theory of relativity (tbilisi, ussr)[J]. Tbilisi University Press, 1968: 174.
[53] Fan Z Y, Wang X. Construction of regular black holes in general relativity[J]. Physical Review D, 2016, 94(12).
[54] Lamy F, Gourgoulhon E, Paumard T, et al. Imaging a non-singular rotating black hole at the center of the galaxy[J]. Classical & Quantum Gravity, 2018, 35(11): 115009.
[55] Copsey K, Mann R. Pathologies in asymptotically Lifshitz spacetimes[J]. Journal of High Energy Physics, 2011, 3(3): 1-30.
[56] Bambi C, Modesto L, Rachwał L. Spacetime completeness of non-singular black holes in conformal gravity[J]. Journal of Cosmology and Astro-Particle Physics, 2016, 5(5): 003-003.
[57] Matsuo N. Einstein gravity as spontaneously broken Weyl gravity[J/OL]. General Relativity and Gravitation, 1990, 22: 561-593. DOI: 10.1007/BF00756230.
[58] Modesto L. Disappearance of black hole singularity in quantum gravity[J/OL]. Phys. Rev. D, 2004, 70: 124009. DOI: 10.1103/PhysRevD.70.124009.

所在学位评定分委会
物理系
国内图书分类号
O41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336186
专题理学院_物理系
推荐引用方式
GB/T 7714
Zhou T. Geodesic Completeness of Regular Black Holes[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930538-周添-物理系.pdf(21874KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周添]的文章
百度学术
百度学术中相似的文章
[周添]的文章
必应学术
必应学术中相似的文章
[周添]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。