[1] Hawking S W, Ellis G F R. The large scale structure of space-time[M]. Cambridge University Press, 1973.
[2] Penrose R. Gravitational collapse and space-time singularities[J]. Physical Review Letters, 1965, Vol: 14(3).
[3] Hawking S W, Penrose R. The singularities of gravitational collapse and cosmology[J]. Proceedings of the Royal Society of London, 1970, 314(1519): 529-548.
[4] Ashtekar A. New Variables for Classical and Quantum Gravity[J/OL]. Phys. Rev. Lett., 1986, 57: 2244-2247. DOI: 10.1103/PhysRevLett.57.2244.
[5] Rovelli C, Smolin L. Loop Space Representation of Quantum General Relativity[J/OL]. Nucl. Phys. B, 1990, 331: 80-152. DOI: 10.1016/0550-3213(90)90019-A.
[6] Rovelli C. Loop quantum gravity[J/OL]. Living Rev. Rel., 1998, 1: 1. DOI: 10.12942/lrr-199 8-1.
[7] Brans C, Dicke R H. Mach’s principle and a relativistic theory of gravitation[J/OL]. Phys. Rev., 1961, 124: 925-935. DOI: 10.1103/PhysRev.124.925.
[8] Stelle K S. Renormalization of Higher Derivative Quantum Gravity[J/OL]. Phys. Rev. D, 1977, 16: 953-969. DOI: 10.1103/PhysRevD.16.953.
[9] Hawking S W, Hertog T. Living with ghosts[J/OL]. Phys. Rev. D, 2002, 65: 103515. DOI: 10.1103/PhysRevD.65.103515.
[10] Mannheim P D. Ghost problems from Pauli-Villars to fourth-order quantum gravity and their resolution[J/OL]. Int. J. Mod. Phys. D, 2020, 29(14): 2043009. DOI: 10.1142/S02182718204 30099.
[11] Donoghue J F, Menezes G. Arrow of Causality and Quantum Gravity[J/OL]. Phys. Rev. Lett., 2019, 123(17): 171601. DOI: 10.1103/PhysRevLett.123.171601.
[12] Asorey M, Lopez J L, Shapiro I L. Some remarks on high derivative quantum gravity[J/OL]. Int. J. Mod. Phys. A, 1997, 12: 5711-5734. DOI: 10.1142/S0217751X97002991.
[13] Modesto L, de Paula Netto T, Shapiro I L. On Newtonian singularities in higher derivative gravity models[J/OL]. JHEP, 2015, 04: 098. DOI: 10.1007/JHEP04(2015)098.
[14] Cornish N J. Quantum nonlocal gravity[J/OL]. Mod. Phys. Lett. A, 1992, 7: 631-640. DOI: 10.1142/S0217732392000604.
[15] Kuzmin Y V. THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN)[J]. Sov. J. Nucl. Phys., 1989, 50: 1011-1014.
[16] Tomboulis E T. Superrenormalizable gauge and gravitational theories[J]. 1997.
[17] Modesto L. Super-renormalizable Quantum Gravity[J/OL]. Phys. Rev. D, 2012, 86: 044005. DOI: 10.1103/PhysRevD.86.044005.
[18] Modesto L, Rachwal L. Nonlocal quantum gravity: A review[J/OL]. Int. J. Mod. Phys. D, 2017, 26(11): 1730020. DOI: 10.1142/S0218271817300208.
[19] Modesto L, Moffat J W, Nicolini P. Black holes in an ultraviolet complete quantum gravity[J]. Physics Letters B, 2011.
[20] Biswas T, Gerwick E, Koivisto T, et al. Towards singularity and ghost free theories of gravity[J/OL]. Phys. Rev. Lett., 2012, 108: 031101. DOI: 10.1103/PhysRevLett.108.031101.
[21] Anselmi D, Marino A. Fakeons and microcausality: light cones, gravitational waves and the Hubble constant[J/OL]. Class. Quant. Grav., 2020, 37(9): 095003. DOI: 10.1088/1361-6382/ ab78d2.
[22] Koshelev A S, Modesto L, Rachwal L, et al. Occurrence of exact 𝑅2 inflation in non-local UV-complete gravity[J/OL]. JHEP, 2016, 11: 067. DOI: 10.1007/JHEP11(2016)067.
[23] Hooft G t. The conformal constraint in canonical quantum gravity[J]. Physics, 2012.
[24] Hooft G t. Singularities, horizons, firewalls, and local conformal symmetry[J]. 2015.
[25] Zee A. Einstein gravity emerging from quantum Weyl gravity[J/OL]. Annals of Physics, 1983, 151: 431-443. DOI: 10.1016/0003-4916(83)90286-5.
[26] D. Making the case for conformal gravity[J/OL]. Foundations of Physics - FOUND PHYS, 2011, 42. DOI: 10.1007/s10701-011-9608-6.
[27] Modesto L, Rachwal L. Finite conformal quantum gravity and spacetime singularities[J]. Journal of Physics Conference, 2017, 942(1): 012015.
[28] Li Q, Modesto L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[29] Modesto L, Zhou T, Li Q. Geometric origin of the galaxies’ dark side[J]. 2021.
[30] Lauscher O, Reuter M. Ultraviolet fixed point and generalized flow equation of quantum gravity[J/OL]. Phys. Rev. D, 2002, 65: 025013. DOI: 10.1103/PhysRevD.65.025013.
[31] Lauscher O, Reuter M. Is quantum Einstein gravity nonperturbatively renormalizable?[J/OL]. Class. Quant. Grav., 2002, 19: 483-492. DOI: 10.1088/0264-9381/19/3/304.
[32] Weinberg S. Ultraviolet divergences in quantum theories of gravitation[M]. Cambridge University Press, 1979: In General Relativity: An Einstein centenary survey: 790-831.
[33] Draper T, Knorr B, Ripken C, et al. Finite Quantum Gravity Amplitudes: No Strings At- tached[J/OL]. Phys. Rev. Lett., 2020, 125(18): 181301. DOI: 10.1103/PhysRevLett.125.18 1301.
[34] Hayward S A. Formation and evaporation of non-singular black holes[J]. Physical Review Letters, 2006, 96(3): 031103.
[35] Bambi C, Modesto L, Wang Y. Lee-wick black holes[J]. Physics Letters B, 2017, 764: 306-309.
[36] Simpson A, Visser M. Regular black holes with asymptotically Minkowski cores[J]. 2019.
[37] Modesto L, Prémont-Schwarz I. Self-dual black holes in loop quantum gravity: Theory and phenomenology[J]. Physical Review D, 2010, 49: 1649-1683.
[38] Modesto L. Space-time structure of loop quantum black hole[J]. International Journal of Theoretical Physics, 2009, 80(6): 064041.
[39] Bonanno A, Reuter M. Renormalization group improved black hole spacetimes[J]. Phys.rev.d, 2000, 62(4): 043008.
[40] Bonanno A, Reuter M. Spacetime structure of an evaporating black hole in quantum gravity[J]. Physical Review D Particles & Fields, 2006, 73(8): 192-194.
[41] Poisson E, Israel W. Internal structure of black holes[J/OL]. Phys. Rev. D, 1990, 41: 1796-1809. DOI: 10.1103/PhysRevD.41.1796.
[42] Ori A. Inner structure of a charged black hole: An exact mass-inflation solution[J/OL]. Phys. Rev. Lett., 1991, 67: 789-792. DOI: 10.1103/PhysRevLett.67.789.
[43] Carballo-Rubio R, Di Filippo F, Liberati S, et al. Geodesically complete black holes[J/OL]. Phys. Rev. D, 2020, 101: 084047. https://link.aps.org/doi/10.1103/PhysRevD.101.084047.
[44] V. Naelikar J, K. Kembhavi A. Space-time singularities and conformal gravity[J/OL]. Lettere Al Nuovo Cimento Series 2, 1977, 19: 517-520. DOI: 10.1007/BF02748215.
[45] Narlikar J V. The vanishing likelihood of space-time singularity in quantum conformal cosmology[J]. Foundations of Physics, 1984, 14(5): 443-456.
[46] Bambi C, Modesto L, Rachwał L. Spacetime completeness of non-singular black holes in conformal gravity[J]. Journal of Cosmology and Astro-Particle Physics, 2016, 5(5): 003-003.
[47] Clarke C J S. On the geodesic completeness of causal space-times[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1971, 69(2): 319-323.
[48] Beem J K. Conformal changes and geodesic completeness[J]. Communications in Mathematical Physics, 1976, 49(2): 179-186.
[49] Modesto L, Shapiro I L. Superrenormalizable quantum gravity with complex ghosts[J/OL]. Phys. Lett. B, 2016, 755: 279-284. DOI: 10.1016/j.physletb.2016.02.021.
[50] Calcagni G, Modesto L. Nonlocal quantum gravity and M-theory[J/OL]. Phys. Rev. D, 2015, 91(12): 124059. DOI: 10.1103/PhysRevD.91.124059.
[51] Calcagni G, Modesto L, Nardelli G. Initial conditions and degrees of freedom of non-local gravity[J/OL]. JHEP, 2018, 05: 087. DOI: 10.1007/JHEP05(2018)087.
[52] Bardeen J. Abstracts of the 5th international conference on gravitation and the theory of relativity (tbilisi, ussr)[J]. Tbilisi University Press, 1968: 174.
[53] Fan Z Y, Wang X. Construction of regular black holes in general relativity[J]. Physical Review D, 2016, 94(12).
[54] Lamy F, Gourgoulhon E, Paumard T, et al. Imaging a non-singular rotating black hole at the center of the galaxy[J]. Classical & Quantum Gravity, 2018, 35(11): 115009.
[55] Copsey K, Mann R. Pathologies in asymptotically Lifshitz spacetimes[J]. Journal of High Energy Physics, 2011, 3(3): 1-30.
[56] Bambi C, Modesto L, Rachwał L. Spacetime completeness of non-singular black holes in conformal gravity[J]. Journal of Cosmology and Astro-Particle Physics, 2016, 5(5): 003-003.
[57] Matsuo N. Einstein gravity as spontaneously broken Weyl gravity[J/OL]. General Relativity and Gravitation, 1990, 22: 561-593. DOI: 10.1007/BF00756230.
[58] Modesto L. Disappearance of black hole singularity in quantum gravity[J/OL]. Phys. Rev. D, 2004, 70: 124009. DOI: 10.1103/PhysRevD.70.124009.
修改评论