[1] KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816): 46-52.
[2] WALTHER P, RESCH K J, RUDOLPH T, et al. Experimental one-way quantum computing[J]. Nature, 2005, 434(7030): 169-176.
[3] LU C Y, BROWNE D E, YANG T, et al. Demonstration of a compiled version of shor’s quantum factoring algorithm using photonic qubits[J]. Phys. Rev. Lett., 2007, 99: 250504.
[4] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[5] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[6] POLITI A, MATTHEWS J C F, O’BRIEN J L. Shor’s quantum factoring algorithm on a photonic chip[J]. Science, 2009, 325(5945): 1221-1221.
[7] HWANG W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Phys. Rev. Lett., 2003, 91: 057901.
[8] LO H K, CURTY M, QI B. Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett., 2012, 108: 130503.
[9] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.
[10] BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels[J]. Phys. Rev. Lett., 1993, 70: 1895-1899.
[11] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[12] PORRAS D, CIRAC J I. Effective quantum spin systems with trapped ions[J]. Phys. Rev. Lett.,2004, 92: 207901.
[13] FRIEDENAUER A, SCHMITZ H, GLUECKERT J T, et al. Simulating a quantum magnet withtrapped ions[J]. Nature Physics, 2008, 4(10): 757-761.
[14] ZHANG J, PAGANO G, HESS P W, et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator[J]. Nature, 2017, 551(7682): 601-604.
[15] KASEVICH M, CHU S. Atomic interferometry using stimulated raman transitions[J]. Phys. Rev. Lett., 1991, 67: 181-184.
[16] WEISS D S, YOUNG B C, CHU S. Precision measurement of ℏ/mcs based on photon recoil using laser-cooled atoms and atomic interferometry[J]. Applied Physics B, 1994, 59(3): 217- 256.
[17] ERHARD M, KRENN M, ZEILINGER A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2020, 2(7): 365-381.
[18] BOSCHI D, BRANCA S, DE MARTINI F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels[J]. Phys. Rev. Lett., 1998, 80: 1121-1125.
[19] ZHAO Z, CHEN Y A, ZHANG A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.
[20] HILLERY M, BUZEK V, BERTHIAUME A. Quantum secret sharing[J]. Phys. Rev. A, 1999, 59: 1829-1834.
[21] ZHANG Q, GOEBEL A, WAGENKNECHT C, et al. Experimental quantum teleportation of a two-qubit composite system[J]. Nature Physics, 2006, 2(10): 678-682.
[22] WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519.
[23] LUO Y H, ZHONG H S, ERHARD M, et al. Quantum teleportation in high dimensions[J]. Phys. Rev. Lett., 2019, 123: 070505.
[24] ZHANG H, ZHANG C, HU X M, et al. Arbitrary two-particle high-dimensional bell-state measurement by auxiliary entanglement[J]. Phys. Rev. A, 2019, 99: 052301.
[25] URSIN R, JENNEWEIN T, ASPELMEYER M, et al. Quantum teleportation across the danube[J]. Nature, 2004, 430(7002): 849-849.
[26] JIN X M, REN J G, YANG B, et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 2010, 4(6): 376-381.
[27] YIN J, REN J G, LU H, et al. Quantum teleportation and entanglement distribution over 100- kilometre free-space channels[J]. Nature, 2012, 488(7410): 185-188.
[28] MA X S, HERBST T, SCHEIDL T, et al. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 2012, 489(7415): 269-273.
[29] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.
[30] SENKO C, RICHERME P, SMITH J, et al. Realization of a quantum integer-spin chain with controllable interactions[J]. Phys. Rev. X, 2015, 5: 021026.
[31] YAN B, MOSES S A, GADWAY B, et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules[J]. Nature, 2013, 501(7468): 521-525.
[32] PARIGI V, D’AMBROSIO V, ARNOLD C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nature Communications, 2015, 6 (1): 7706.
[33] DING D S, ZHANG W, SHI S, et al. High-dimensional entanglement between distant atomicensemble memories[J]. Light: Science & Applications, 2016, 5(10): e16157-e16157.
[34] NEELEY M, ANSMANN M, BIALCZAK R C, et al. Emulation of a quantum spin with a superconducting phase qudit[J]. 2009, 325(5941): 722-725.
[35] CHOI S, CHOI J, LANDIG R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system[J]. Nature, 2017, 543(7644): 221-225.
[36] GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J]. Nature, 1999, 402(6760): 390-393.
[37] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys. Rev. Lett., 1997, 78: 3221-3224.
[38] DUAN L, BLINOV B B, MOEHRING D L, et al. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping[J]. Quantum Inf. Comput., 2004, 4(3): 165-173.
[39] CIRAC J I, EKERT A K, HUELGA S F, et al. Distributed quantum computation over noisy channels[J]. Phys. Rev. A, 1999, 59: 4249-4254.
[40] NIELSEN M A, CHUANG I L. Programmable quantum gate arrays[J]. Phys. Rev. Lett., 1997, 79: 321-324.
[41] SØRENSEN A, MØLMER K. Error-free quantum communication through noisy channels[J]. Phys. Rev. A, 1998, 58: 2745-2749.
[42] COLLINS D, LINDEN N, POPESCU S. Nonlocal content of quantum operations[J]. Phys. Rev. A, 2001, 64: 032302.
[43] EISERT J, JACOBS K, PAPADOPOULOS P, et al. Optimal local implementation of nonlocal quantum gates[J]. Phys. Rev. A, 2000, 62: 052317.
[44] HUANG Y F, REN X F, ZHANG Y S, et al. Experimental teleportation of a quantum controllednot gate[J]. Phys. Rev. Lett., 2004, 93: 240501.
[45] GAO W B, GOEBEL A M, LU C Y, et al. Teleportation-based realization of an optical quantum two-qubit entangling gate[J]. Proceedings of the National Academy of Sciences, 2010, 107(49): 20869-20874.
[46] WAN Y, KIENZLER D, ERICKSON S D, et al. Quantum gate teleportation between separated qubits in a trapped-ion processor[J]. Science, 2019, 364(6443): 875-878.
[47] CHOU K S, BLUMOFF J Z, WANG C S, et al. Deterministic teleportation of a quantum gate between two logical qubits[J]. Nature, 2018, 561(7723): 368-373.
[48] HU X M, ZHANG C, LIU B H, et al. Experimental high-dimensional quantum teleportation[J]. Phys. Rev. Lett., 2020, 125: 230501.
[49] WANG C, DENG F G, LI Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A, 2005, 71: 044305.
[50] BARBIERI M, VALLONE G, MATALONI P, et al. Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement[J]. Phys. Rev. A, 2007, 75: 042317.
[51] BARBIERI M, CINELLI C, MATALONI P, et al. Polarization-momentum hyperentangled states: Realization and characterization[J]. Phys. Rev. A, 2005, 72: 052110.
[52] VALLONE G, CECCARELLI R, DE MARTINI F, et al. Hyperentanglement of two photons in three degrees of freedom[J]. Phys. Rev. A, 2009, 79: 030301.
[53] SCHUCK C, HUBER G, KURTSIEFER C, et al. Complete deterministic linear optics bell state analysis[J]. Phys. Rev. Lett., 2006, 96: 190501.
[54] SCHRÖDINGER E. The present status of quantum mechanics[J]. Die Naturwissenschaften, 1935, 23(48): 1-26.
[55] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Phys. Rev., 1935, 47: 777-780.
[56] BOHM D. A suggested interpretation of the quantum theory in terms of ”hidden” variables[J]. Phys. Rev., 1952, 85: 166-179.
[57] BELL J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1: 195- 200.
[58] FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories[J]. Phys. Rev. Lett., 1972, 28: 938-941.
[59] ASPECT A, DALIBARD J, ROGER G. Experimental test of bell’s inequalities using timevarying analyzers[J]. Phys. Rev. Lett., 1982, 49: 1804-1807.
[60] WEIHS G, JENNEWEIN T, SIMON C, et al. Violation of bell’s inequality under strict einstein locality conditions[J]. Phys. Rev. Lett., 1998, 81: 5039-5043.
[61] ROWE M A, KIELPINSKI D, MEYER V, et al. Experimental violation of a bell’s inequality with efficient detection[J]. Nature, 2001, 409(6822): 791-794.
[62] MATSUKEVICH D N, MAUNZ P, MOEHRING D L, et al. Bell inequality violation with two remote atomic qubits[J]. Phys. Rev. Lett., 2008, 100: 150404.
[63] ANSMANN M, WANG H, BIALCZAK R C, et al. Violation of bell’s inequality in josephson phase qubits[J]. Nature, 2009, 461(7263): 504-506.
[64] HENSEN B, BERNIEN H, DRÉAU A E, et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres[J]. Nature, 2015, 526(7575): 682-686.
[65] WERNER R F. Quantum states with einstein-podolsky-rosen correlations admitting a hiddenvariable model[J]. Phys. Rev. A, 1989, 40: 4277-4281.
[66] KWIAT P G, MATTLE K, WEINFURTER H, et al. New high-intensity source of polarizationentangled photon pairs[J]. Phys. Rev. Lett., 1995, 75: 4337-4341.
[67] GREENBERGER D M, HORNE M, ZEILINGER A. Similarities and differences between two-particle and three-particle interference[J]. Fortschritte der Physik, 2000, 48(4): 243-252.
[68] DÜR W, VIDAL G, CIRAC J I. Three qubits can be entangled in two inequivalent ways[J]. Phys. Rev. A, 2000, 62: 062314.
[69] LU C Y, ZHOU X Q, GÜHNE O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95.
[70] BOUWMEESTER D, PAN J W, DANIELL M, et al. Observation of three-photon greenbergerhorne-zeilinger entanglement[J]. Phys. Rev. Lett., 1999, 82: 1345-1349.
[71] PAN J W, DANIELL M, GASPARONI S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation[J]. Phys. Rev. Lett., 2001, 86: 4435-4438.
[72] YAO X C, WANG T X, XU P, et al. Observation of eight-photon entanglement[J]. Nature Photonics, 2012, 6(4): 225-228.
[73] YAO X C, WANG T X, CHEN H Z, et al. Experimental demonstration of topological error correction[J]. Nature, 2012, 482(7386): 489-494.
[74] WANG X L, CHEN L K, LI W, et al. Experimental ten-photon entanglement[J]. Phys. Rev. Lett., 2016, 117: 210502.
[75] CHEN L K, LI Z D, YAO X C, et al. Observation of ten-photon entanglement using thin bib3o6 crystals[J]. Optica, 2017, 4(1): 77-83.
[76] ZHONG H S, LI Y, LI W, et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion[J]. Phys. Rev. Lett., 2018, 121: 250505.
[77] BARREIRO J T, LANGFORD N K, PETERS N A, et al. Generation of hyperentangled photon pairs[J]. Phys. Rev. Lett., 2005, 95: 260501.
[78] KWIAT P G, WEINFURTER H. Embedded bell-state analysis[J]. Phys. Rev. A, 1998, 58: R2623-R2626.
[79] SIMON C, PAN J W. Polarization entanglement purification using spatial entanglement[J]. Phys. Rev. Lett., 2002, 89: 257901.
[80] BRUẞ D, MACCHIAVELLO C. Optimal eavesdropping in cryptography with threedimensional quantum states[J]. Phys. Rev. Lett., 2002, 88: 127901.
[81] JOZSA R. Fidelity for mixed quantum states[J]. Journal of Modern Optics, 1994, 41(12): 2315-2323.
[82] NIELSEN M A, CHUANG I L. Quantum computation and quantum information: 10th anniversary edition[M]. [S.l.]: Cambridge University Press, 2010.
[83] NIELSEN M A. A simple formula for the average gate fidelity of a quantum dynamical operation[J]. Physics Letters A, 2002, 303(4): 249-252.
[84] DIRAC P. The principles of quantum mechanics[M]. Oxford: Oxford Science Publications, 1958: 29-48.
[85] WOOTTERS W K, ZUREK W H. A single quantum cannot be cloned[J]. Nature, 1982, 299 (5886): 802-803.
[86] THEW R T, NEMOTO K, WHITE A G, et al. Qudit quantum-state tomography[J]. Phys. Rev. A, 2002, 66: 012303.
[87] SCHAEFER B, COLLETT E, SMYTH R, et al. Measuring the stokes polarization parameters[J]. American Journal of Physics, 2007, 75(2): 163-168.
[88] JAMES D F V, KWIAT P G, MUNRO W J, et al. Measurement of qubits[J]. Phys. Rev. A, 2001, 64: 052312.
[89] HUSZÁR F, HOULSBY N M T. Adaptive bayesian quantum tomography[J]. Phys. Rev. A, 2012, 85: 052120.
[90] OKAMOTO R, IEFUJI M, OYAMA S, et al. Experimental demonstration of adaptive quantum state estimation[J]. Phys. Rev. Lett., 2012, 109: 130404.
[91] CHUANG I L, NIELSEN M A. Prescription for experimental determination of the dynamics of a quantum black box[J]. Journal of Modern Optics, 1997, 44(11-12): 2455-2467.
[92] POYATOS J F, CIRAC J I, ZOLLER P. Complete characterization of a quantum process: The two-bit quantum gate[J]. Phys. Rev. Lett., 1997, 78: 390-393.
[93] CHILDS A M, CHUANG I L, LEUNG D W. Realization of quantum process tomography in nmr[J]. Phys. Rev. A, 2001, 64: 012314.
[94] WEINSTEIN Y S, HAVEL T F, EMERSON J, et al. Quantum process tomography of the quantum fourier transform[J]. The Journal of Chemical Physics, 2004, 121(13): 6117-6133.
[95] DE MARTINI F, MAZZEI A, RICCI M, et al. Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single-qubit device[J]. Phys. Rev. A, 2003, 67: 062307.
[96] ALTEPETER J B, BRANNING D, JEFFREY E, et al. Ancilla-assisted quantum process tomography[J]. Phys. Rev. Lett., 2003, 90: 193601.
[97] O’BRIEN J L, PRYDE G J, GILCHRIST A, et al. Quantum process tomography of a controllednot gate[J]. Phys. Rev. Lett., 2004, 93: 080502.
[98] MITCHELL M W, ELLENOR C W, SCHNEIDER S, et al. Diagnosis, prescription, and prognosis of a bell-state filter by quantum process tomography[J]. Phys. Rev. Lett., 2003, 91: 120402.
[99] RIEBE M, KIM K, SCHINDLER P, et al. Process tomography of ion trap quantum gates[J]. Phys. Rev. Lett., 2006, 97: 220407.
[100] HANNEKE D, HOME J P, JOST J D, et al. Realization of a programmable two-qubit quantum processor[J]. Nature Physics, 2010, 6(1): 13-16.
[101] NEELEY M, ANSMANN M, BIALCZAK R C, et al. Process tomography of quantum memory in a josephson-phase qubit coupled to a two-level state[J]. Nature Physics, 2008, 4(7): 523-526.
[102] CHOW J M, GAMBETTA J M, TORNBERG L, et al. Randomized benchmarking and process tomography for gate errors in a solid-state qubit[J]. Phys. Rev. Lett., 2009, 102: 090502.
[103] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum process tomography of a universal entangling gate implemented with josephson phase qubits[J]. Nature Physics, 2010, 6(6): 409-413.
[104] YAMAMOTO T, NEELEY M, LUCERO E, et al. Quantum process tomography of two-qubit controlled-z and controlled-not gates using superconducting phase qubits[J]. Phys. Rev. B, 2010, 82: 184515.
[105] CHOW J M, CÓRCOLES A D, GAMBETTA J M, et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits[J]. Phys. Rev. Lett., 2011, 107: 080502.
[106] DEWES A, ONG F R, SCHMITT V, et al. Characterization of a two-transmon processor with individual single-shot qubit readout[J]. Phys. Rev. Lett., 2012, 108: 057002.
[107] ZHANG J, SOUZA A M, BRANDAO F D, et al. Protected quantum computing: Interleaving gate operations with dynamical decoupling sequences[J]. Phys. Rev. Lett., 2014, 112: 050502.
[108] HOWARD M, TWAMLEY J, WITTMANN C, et al. Quantum process tomography and linblad estimation of a solid-state qubit[J]. New Journal of Physics, 2006, 8(3): 33-33.
[109] CHUANG I L, GERSHENFELD N, KUBINEC M G, et al. Bulk quantum computation with nuclear magnetic resonance: theory and experiment[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1969): 447- 467.
[110] SENKO C, RICHERME P, SMITH J, et al. Realization of a quantum integer-spin chain with controllable interactions[J]. Phys. Rev. X, 2015, 5: 021026.
[111] YAN B, MOSES S A, GADWAY B, et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules[J]. Nature, 2013, 501(7468): 521-525.
[112] PARIGI V, D’AMBROSIO V, ARNOLD C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nature Communications, 2015, 6 (1): 7706.
[113] DING D S, ZHANG W, SHI S, et al. High-dimensional entanglement between distant atomicensemble memories[J]. Light: Science & Applications, 2016, 5(10): e16157-e16157.
[114] NEELEY M, ANSMANN M, BIALCZAK R C, et al. Emulation of a quantum spin with a superconducting phase qudit[J]. Science, 2009, 325(5941): 722-725.
[115] CHOI S, CHOI J, LANDIG R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system[J]. Nature, 2017, 543(7644): 221-225.
[116] RIGOLIN G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement[J]. Phys. Rev. A, 2005, 71: 032303.
[117] LIU S, LOU Y, JING J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation[J]. Nature Communications, 2020, 11(1): 3875.
[118] WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519.
[119] HU X M, ZHANG C, LIU B H, et al. Experimental high-dimensional quantum teleportation[J]. Phys. Rev. Lett., 2020, 125: 230501.
[120] PRESKILL J. Quantum computing in the nisq era and beyond[J]. Quantum, 2018, 2.
[121] AVRON J, CASPER O, ROZEN I. Quantum advantage and noise reduction in distributed quantum computing[J]. Phys. Rev. A, 2021, 104: 052404.
[122] EISERT J, JACOBS K, PAPADOPOULOS P, et al. Optimal local implementation of nonlocal quantum gates[J]. Phys. Rev. A, 2000, 62: 052317.
[123] JIANG L, TAYLOR J M, SØRENSEN A S, et al. Distributed quantum computation based on small quantum registers[J]. Phys. Rev. A, 2007, 76: 062323.
[124] GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J]. Nature, 1999, 402(6760): 390-393.
[125] EISERT J, JACOBS K, PAPADOPOULOS P, et al. Optimal local implementation of nonlocal quantum gates[J]. Phys. Rev. A, 2000, 62: 052317.
[126] COLLINS D, LINDEN N, POPESCU S. Nonlocal content of quantum operations[J]. Phys. Rev. A, 2001, 64: 032302.
[127] HOFMANN H F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations[J]. Phys. Rev. Lett., 2005, 94: 160504.
[128] HOFMANN H F, OKAMOTO R, TAKEUCHI S. Analysis of an experimental quantum logic gate by complementary classical operations[J]. Modern Physics Letters A, 2006, 21(24): 1837- 1850.
[129] HOFMANN H F, OKAMOTO R, TAKEUCHI S. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates[M]. [S.l.: s.n.]: 68-71.
修改评论