中文版 | English
题名

基于 beamforming 反馈矩阵的 Wi-Fi 感知 研究

其他题名
A STUDY OF WI-FI SENSING BASED ONBEAMFORMING FEEDBACK MATRIX
姓名
姓名拼音
JIANG Yihang
学号
12032236
学位类型
硕士
学位专业
0856材料与化工
学科门类/专业学位类别
0856材料与化工
导师
贡毅
导师单位
工学院
论文答辩日期
2022-05-11
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

通信感知一体化(Integrated Sensing and Communication)被认为是下一代通信 系统的重要特征之一。作为一个非常有前景的技术方向,近年来,通信感知一体 化的相关技术已经引起了学术界和工业界越来越多的关注。在学术研究中,已经 被证明了有许多可行的应用可以通过商品 Wi-Fi 设备实现,例如:Wi-Fi 感知。在 工业界,一个名为 WLAN Sensing(也称为 IEEE 802.11bf)的任务组由 IEEE 标准 协会成立于 2020 年,以提供用 Wi-Fi 信号进行感知的标准支持。 Wi-Fi 感知是指,通过 Wi-Fi 信号观测到与环境相关的信道状态信息(Channel State Information,CSI),然后这些 CSI 可以被广泛用于不同目的的感知。据我们 所知,到目前为止,Wi-Fi 感知的大部分研究都是基于完整的信道状态信息进行的。 然而,从 IEEE 802.11ac 开始,压缩的信道状态信息是今后 Wi-Fi 标准中唯一被支 持的反馈类型。这就意味着,这些 Wi-Fi 感知的相关研究只能在可以获取到完整 CSI 的接收侧进行。因此,本文旨在对基于压缩的信道状态信息的 Wi-Fi 感知进行 全面的研究,以使得在发射侧的感知成为可能。 在 MIMO(Multiple-Input Multiple-Output)系统中,发送端波束成形(Beam forming)是一种常见的用于改善通信质量的信号处理技术。在信道监听阶段,接 收端需要对发送端发送的监听帧进行信道估计。在有限反馈情况下,还需要对估 计出的信道矩阵进行矩阵分解得到 beamforming 反馈矩阵,并且压缩反馈给发送 端。最终,发送端通过 beamforming 反馈矩阵对发送信号进行预编码,从而实现波 束成形。由于 beamforming 反馈矩阵一般是通过对 CSI 进行矩阵分解得到的压缩 信道状态信息,显然,不同的分解方式对于感知性能来说会产生不同的影响。本 文主要是对单用户场景下基于压缩信道状态信息的 Wi-Fi 感知进行了研究。一方 面是对矩阵分解方式及相应的反馈方案的研究,具体研究了奇异值分解(Singular Value Decomposition,SVD)和正交三角分解(QR Decomposition,QRD)两种分 解方式,并对各自不同的反馈方案及感知性能进行了分析。另一方面,也对上述 反馈方案的通信性能进行了考量。本文通过仿真以及进一步的实验,从感知和通 信的角度分别对不同反馈方案进行了性能分析和比较,并最终提出了一个感知和 通信功能融合的系统,以实现感知和通信功能一体化。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] LIU A, HUANG Z, LI M, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys Tutorials, 2022.
[2] LIU F, CUI Y, MASOUROS C, et al. Integrated sensing and communications: Towards dualfunctional wireless networks for 6G and beyond[J].
[3] CUI Y, LIU F, JING X, et al. Integrating sensing and communications for ubiquitous IoT:Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158-167.
[4] IMT-2030(6G) 推进组. 通信感知一体化技术研究报告[M]. 2021.
[5] IMT-2030(6G) 推进组. 6G 网络架构愿景与关键技术展望白皮书[M]. 2021.
[6] PALIPANA S, ROJAS D, AGRAWAL P, et al. FallDeFi: Ubiquitous fall detection using com modity Wi-Fi devices[C]//Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. New York, NY, USA: Association for Computing Machinery, 2018: 1-25.
[7] JIANG W, MIAO C, MA F, et al. Towards environment independent device free human activity recognition[C]//Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. New York, NY, USA: Association for Computing Machinery, 2018: 289-306.
[8] HUANG D, NANDAKUMAR R, GOLLAKOTA S. Feasibility and limits of Wi-Fi imaging[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York, NY, USA: Association for Computing Machinery, 2014: 266-279.
[9] WANG J, JIANG H, XIONG J, et al. LiFS: Low human-effort, device-free localization with fine-grained subcarrier information[C]//Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. New York, NY, USA: Association for Computing Machinery, 2016: 243-256.
[10] SUN L, SEN S, KOUTSONIKOLAS D, et al. WiDraw: Enabling hands-free drawing in the air on commodity WiFi devices[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. New York, NY, USA: Association for Computing Machinery, 2015: 77-89.
[11] MA Y, ZHOU G, WANG S. WiFi sensing with channel state information: A survey[J]. ACM Comput. Surv., 2019, 52(3): 1-36.
[12] LI X, LI S, ZHANG D, et al. Dynamic-MUSIC: Accurate device-free indoor localization[C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: Association for Computing Machinery, 2016: 196-207.
[13] ADIB F, KATABI D. See through walls with WiFi![C]//Proceedings of the ACM SIGCOMM2013 Conference on SIGCOMM. New York, NY, USA: Association for Computing Machinery, 2013: 75-86.
[14] LI X, ZHANG D, LV Q, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi[C]//Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. New York, NY, USA:Association for Computing Machinery, 2017: 1-22.
[15] JOSHI K, BHARADIA D, KOTARU M, et al. WiDeo: Fine-grained device-free motion trac ing using RF backscatter[C]//12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). Oakland, CA: USENIX Association, 2015: 189-204.
[16] QIAN K, WU C, YANG Z, et al. Widar: Decimeter-level passive tracking via velocity mon itoring with commodity Wi-Fi[C]//Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York, NY, USA: Association for Computing Machinery, 2017: 1-10.
[17] QIAN K, WU C, YANG Z, et al. Decimeter level passive tracking with WiFi[C]//Proceedings of the 3rd Workshop on Hot Topics in Wireless. New York, NY, USA: Association for Computing Machinery, 2016: 44-48.
[18] SCHUHMANN S, HERRMANN K, ROTHERMEL K, et al. Improved weighted centroid local ization in smart ubiquitous environments[C]//Ubiquitous Intelligence and Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 20-34.
[19] SADOWSKI S, SPACHOS P. RSSI-based indoor localization with the internet of things[J]. IEEE Access, 2018, 6: 30149-30161.
[20] TOMIC S, BEKO M, DINIS R. 3-D target localization in wireless sensor networks using RSS and AoA measurements[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3197-3210.
[21] XUE W, QIU W, HUA X, et al. Improved Wi-Fi RSSI measurement for indoor localization[J]. IEEE Sensors Journal, 2017, 17(7): 2224-2230.
[22] BIANCHI V, CIAMPOLINI P, DE MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumen tation and Measurement, 2019, 68(2): 566-575.
[23] ZANELLA A. Best practice in RSS measurements and ranging[J]. IEEE Communications Surveys Tutorials, 2016, 18(4): 2662-2686.
[24] SAVIC V, LARSSON E G. Fingerprinting-based positioning in distributed massive MIMO systems[C]//2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). 2015: 1-5.
[25] SHU Y, HUANG Y, ZHANG J, et al. Gradient-based fingerprinting for indoor localization and tracking[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2424-2433.
[26] AWAD A, FRUNZKE T, DRESSLER F. Adaptive distance estimation and localization in WSN using RSSI measures[C]//10th Euromicro Conference on Digital System Design Architectures,Methods and Tools (DSD 2007). 2007: 471-478.
[27] WEN Y, TIAN X, WANG X, et al. Fundamental limits of RSS fingerprinting based indoor localization[C]//2015 IEEE Conference on Computer Communications (INFOCOM). 2015:2479-2487.
[28] WU Y I, WANG H, ZHENG X. WSN localization using RSS in three-dimensional Space—A geometric method with closed-form solution[J]. IEEE Sensors Journal, 2016, 16(11): 4397-4404.
[29] ZAFARI F, GKELIAS A, LEUNG K K. A survey of indoor localization systems and technolo gies[J]. IEEE Communications Surveys Tutorials, 2019, 21(3): 2568-2599.
[30] PARK D, PARK J G. An enhanced ranging scheme using WiFi RSSI measurements for ubiq uitous location[C]//2011 First ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engineering. 2011: 296-301.
[31] 杨铮, 刘云浩. Wi-Fi 雷达:从 RSSI 到 CSI[J]. 中国计算机学会通讯, 2014, 10(11).
[32] CHABBAR H, CHAMI M. Indoor localization using Wi-Fi method based on fingerprinting technique[C]//2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). 2017: 1-5.
[33] LIU H, DARABI H, BANERJEE P, et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(6): 1067-1080.
[34] POULOSE A, HAN D S. Performance analysis of fingerprint matching algorithms for in door localization[C]//2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2020: 661-665.
[35] HALPERIN D, HU W, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. SIGCOMM Comput. Commun. Rev., 2011, 41(1): 53.
[36] 谢晓辉. 基于信道状态信息的情景感知技术研究[D]. 南京: 南京邮电大学, 2018.
[37] QIAN K, WU C, ZHANG Y, et al. Widar2.0: Passive human tracking with a single Wi-Fi link[C]//Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: Association for Computing Machinery, 2018: 350–361.
[38] XIE Y, LI Z, LI M. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342-1355.
[39] TADAYON N, RAHMAN M T, HAN S, et al. Decimeter ranging with channel state information[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3453-3468.
[40] SPETH M, FECHTEL S, FOCK G, et al. Optimum receiver design for wireless broad-band systems using OFDM. I[J]. IEEE Transactions on Communications, 1999, 47(11): 1668-1677.
[41] SCHMIDL T, COX D. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, 1997, 45(12): 1613-1621.
[42] JANA S, KASERA S K. On fast and accurate detection of unauthorized wireless access points using clock skews[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 449-462.
[43] WANG H, ZHANG D, MA J, et al. Human respiration detection with commodity WiFi devices: Do user location and body orientation matter?[C]//WHITE H J, SMITH R. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Heidel berg: Machinery, 2016: 25-36.
[44] GUO X, LIU B, SHI C, et al. WiFi-enabled smart human dynamics monitoring[J]. In Proceed ings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys’17), 2017, 16(3): 13.
[45] QIAN K, WU C, YANG Z, et al. PADS: Passive detection of moving targets with dynamic speed using PHY layer information[C]//2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Hsinchu, Taiwan: IEEE, 2014: 1-8.
[46] GONG L, YANG W, MAN D, et al. WiFi-based real-time calibration-free passive human motion detection[J]. Sensors, 2015, 15(12): 32213-32229.
[47] GUO X, LIU B, SHI C, et al. WiFi-enabled smart human dynamics monitoring[J]. In Proceed ings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys’17), 2017, 16(3): 13.
[48] SCHWERDTFEGER H. Geometry of complex numbers: Circle geometry, moebius transformation, non-euclidean geometry[J]. Courier Corporation, 1979.
[49] DAVIES L, GATHER U. The identification of multiple outliers[J]. Amer. Statist. Assoc, 1994, 34(2): 1-7.
[50] CHEN Y, DONG W, GAO Y, et al. Rapid: A multimodal and device-free approach using noise estimation for robust person identification[J]. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2017, 1(3): 1-27.
[51] HE W, WU K, ZOU Y, et al. WiG: WiFi-based gesture recognition system[C]//2015 24th In ternational Conference on Computer Communication and Networks (ICCCN). 2015: 1-7.
[52] PENG H, JIA W. WiFind: Driver fatigue detection with fine-grained Wi-Fi signal features[C]// GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 2017: 1-6.
[53] WANG Y, JIANG X, CAO R, et al. Robust indoor human activity recognition using wireless signals[J]. Sensors, 2015, 15(7): 17195-17208.
[54] ALI K, LIU A X, WANG W, et al. Keystroke recognition using WiFi signals[C]//GLOBECOM 2017 - 2017 IEEE Global Communications Conference. New York, NY, USA: Association for Computing Machinery, 2015: 90–102.
[55] ALI K, LIU A X, WANG W, et al. Recognizing keystrokes using WiFi devices[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(5): 1175-1190.
[56] ABDELNASSER H, YOUSSEF M, HARRAS K A. WiGest: A ubiquitous WiFi-based gesture recognition system[C]//2015 IEEE Conference on Computer Communications (INFOCOM). 2015: 1472-1480.
[57] LIU X, CAO J, TANG S, et al. Wi-Sleep: Contactless sleep monitoring via WiFi signals[C]// 2014 IEEE Real-Time Systems Symposium. 2014: 346-355.
[58] BAGCI I E, ROEDIG U, MARTINOVIC I, et al. Using channel state information for tamper detection in the internet of things[C]//Proceedings of the 31st Annual Computer Security Appli cations Conference. New York, NY, USA: Association for Computing Machinery, 2015: 131–140.
[59] XIAO F, XIE X, ZHU H, et al. Invisible cloak fails: CSI-based passive human detection[C]//Proceedings of the 1st Workshop on Context Sensing and Activity Recognition. New York, NY, USA: Association for Computing Machinery, 2015: 19-23.
[60] CHENG L, WANG J. How can I guard my AP? Non-intrusive user identification for mobile devices using WiFi signals[C]//Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York, NY, USA: Association for Computing Machinery, 2016: 91-100.
[61] SHANG J, WU J. Fine-gained vital signs estimation using commercial Wi-Fi devices[C]//Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Work shop. New York, NY, USA: Association for Computing Machinery, 2016: 30-32.
[62] ZENG Y, WU D, GAO R, et al. FullBreathe: Full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Amer. Interact. Mob. Wearable Ubiquitous Technol, 2018, 2(3): 1-7.
[63] FANG B, LANE N D, ZHANG M, et al. BodyScan: Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring[C]//Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: Association for Computing Machinery, 2016: 97–110.
[64] FANG B, LANE N D, ZHANG M, et al. HeadScan: A wearable system for radio-based sensing of head and mouth-related activities[C]//2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). 2016: 1-12.
[65] HONG F, WANG X, YANG Y, et al. WFID: Passive device-free human identification using WiFi signal[C]//Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. New York, NY, USA: Association for Computing Machinery, 2016: 47–56.
[66] OHARA K, MAEKAWA T, MATSUSHITA Y. Detecting state changes of indoor everyday ob jects using Wi-Fi channel state information[J]. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2017, 1(3): 1-28.
[67] GAO C, LI Y, ZHANG X. LiveTag: Sensing human-object interaction through passive chipless WiFi tags[C]//15th USENIX Symposium on Networked Systems Design and Implementation(NSDI 18). Renton, WA: USENIX Association, 2018: 533-546.
[68] LIU X, CAO J, TANG S, et al. Contactless respiration monitoring via off-the-shelf WiFi devices[J]. IEEE Transactions on Mobile Computing, 2016, 15(10): 2466-2479.
[69] ABDELNASSER H, HARRAS K A, YOUSSEF M. UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator[C]//Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York, NY, USA: Association for Computing Machinery, 2015: 277–286.
[70] GUO X, LIU B, SHI C, et al. WiFi-enabled smart human dynamics monitoring[C]//Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. New York, NY, USA: Association for Computing Machinery, 2017: 1-13.
[71] QIAN K, WU C, ZHOU Z, et al. Inferring motion direction using commodity Wi-Fi for interac tive exergames[C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Computing Machinery, 2017: 1961–1972.
[72] WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of WiFi signal based human activity recognition[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. New York, NY, USA: Association for Computing Machinery, 2015: 65–76.
[73] WANG X, YANG C, MAO S. PhaseBeat: Exploiting CSI phase data for vital sign monitor ing with commodity WiFi devices[C]//2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 2017: 1230-1239.
[74] KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: Decimeter level localization using WiFi[J]. SIGCOMM Comput. Commun. Rev., 2015, 45(4): 269–282.
[75] ZHANG F, CHEN C, WANG B, et al. WiSpeed: A statistical electromagnetic approach for device-free indoor speed estimation[J]. IEEE Internet of Things Journal, 2018, 5(3): 2163-2177.
[76] ZHANG F, WU C, WANG B, et al. WiDetect: Robust motion detection with a statistical electromagnetic model[J]. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2019, 3(3):1-24.
[77] LIU J, WANG Y, CHEN Y, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi [C]//Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York, NY, USA: Association for Computing Machinery, 2015: 267–276.
[78] ARSHAD S, FENG C, LIU Y, et al. Wi-chase: A WiFi based human activity recognition system for sensorless environments[C]//2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). 2017: 1-6.
[79] WANG Y, WU K, NI L M. WiFall: Device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594.
[80] LV J, MAN D, YANG W, et al. Robust WLAN-based indoor intrusion detection using PHY layer information[J]. IEEE Access, 2018, 6: 30117-30127.
[81] DING X, JIANG T, LI Y, et al. Device-free location-independent human activity recognition using transfer learning based on CNN[C]//2020 IEEE International Conference on Communi cations Workshops (ICC Workshops). 2020: 1-6.
[82] YU H, KIM T. Beamforming transmission in IEEE 802.11ac under time-varying channels[J]. The Scientific World Journal, 2014, 2014.
[83] PERAHIA E, CORPORATION I, HILLSBORO, et al. Next generation wireless LANs 802.11n and 802.11ac[M]. 2013.
[84] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[85] PAULRAJ A, REDDY V, SHAN T, et al. Performance analysis of the MUSIC algorithm with spatial smoothing in the presence of coherent sources[C]//MILCOM 1986 - IEEE Military Com munications Conference: Communications-Computers: Teamed for the 90’s. Monterey, CA,USA: IEEE, 1986: 41.5.1-41.5.5.
[86] 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004.
[87] VENKAIAH V C, KRISHNA V V, PAULRAJ A. Householder transform in 𝐶𝑚[J]. Digital Signal Processing, 1993, 3: 226-227.
[88] CHUNG K L, YAN W M. The complex Householder transform[J]. IEEE Transactions on Signal Processing, 1997, 45(9): 2374-2376.
[89] HUANG Z Y, TSAI P Y. Efficient implementation of QR decomposition for Gigabit MIMO OFDM systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(10): 2531-2542.
[90] ZHOU Z, WU C, YANG Z, et al. Sensorless sensing with Wi-Fi[J]. Tsinghua Science and Technology, 2015, 20: 1-6.
[91] ZENG Y, WU D, XIONG J, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2019, 3(3): 1-26.
[92] HAN Z, LU Z, WEN X, et al. CentiTrack: Towards centimeter-level passive gesture tracking with commodity WiFi[J]. 2020.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TN958
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336193
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
江一航. 基于 beamforming 反馈矩阵的 Wi-Fi 感知 研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032236-江一航-电子与电气工程(7789KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[江一航]的文章
百度学术
百度学术中相似的文章
[江一航]的文章
必应学术
必应学术中相似的文章
[江一航]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。