题名 | Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2022-08-01
|
DOI | |
发表期刊 | |
ISSN | 0142-727X
|
EISSN | 1879-2278
|
卷号 | 96 |
摘要 | Based on the framework of deconvolutional artificial neural network (DANN) proposed by Yuan et al.[DOI:https://doi.org/10.1063/5.0027146], we extend the DANN approach to model subgrid-scale (SGS) terms in large eddy simulation (LES) of chemically reacting compressible turbulent flow with evident heat release. In constructing the DANN, the normalized density-weighted filtered variables in the neighbouring stencils are taken as the inputs while the outputs are unfiltered density-weighted variables. The SGS stress, SGS heat flux, SGS scalar flux and chemical reaction source terms are modelled using those unfiltered variables which are recovered by the DANN framework to close the governing equations. The DANN framework is evaluated by two chemically reacting compressible isotropic turbulent flow cases adopting a simple one-step irreversible chemical reaction mechanism at turbulent Mach numbers 0.4 and 0.8. In the a priori study, the DANN method shows better performance compared to the classical approximate-deconvolution method (ADM) and the velocity-gradient model (VGM). In the a posteriori test, the DANN method outperforms the dynamic-Smagorinsky model (DSM), and the dynamic-mixed model (DMM). In addition, the DANN framework can predict flow variables with high accuracy by using limited training samples which are constructed from any single instantaneous flow data during the reaction process. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China (NSFC)[91952104,92052301,12172161,12161141017,91752201]
; Shenzhen Science and Technology Program[KQTD20180411143441009]
; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103]
; Department of Science and Technology of Guangdong Province[2020B1212030001]
; Guangdong Basic and Applied Basic Research Foundation[2021A1515110845]
; National Numerical Wind tunnel Project[NNW2019ZT1-A04]
|
WOS研究方向 | Thermodynamics
; Engineering
; Mechanics
|
WOS类目 | Thermodynamics
; Engineering, Mechanical
; Mechanics
|
WOS记录号 | WOS:000810178800003
|
出版者 | |
EI入藏号 | 20222312190188
|
EI主题词 | Combustion
; Heat flux
; Large eddy simulation
; Turbulence
; Turbulent flow
|
EI分类号 | Fluid Flow:631
; Fluid Flow, General:631.1
; Heat Transfer:641.2
; Mathematics:921
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85131137423
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/336225 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,511458,China 3.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Teng,Jian,Yuan,Zelong,Wang,Jianchun. Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence[J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,2022,96.
|
APA |
Teng,Jian,Yuan,Zelong,&Wang,Jianchun.(2022).Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence.INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,96.
|
MLA |
Teng,Jian,et al."Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence".INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW 96(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论