中文版 | English
题名

Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence

作者
通讯作者Wang,Jianchun
发表日期
2022-08-01
DOI
发表期刊
ISSN
0142-727X
EISSN
1879-2278
卷号96
摘要
Based on the framework of deconvolutional artificial neural network (DANN) proposed by Yuan et al.[DOI:https://doi.org/10.1063/5.0027146], we extend the DANN approach to model subgrid-scale (SGS) terms in large eddy simulation (LES) of chemically reacting compressible turbulent flow with evident heat release. In constructing the DANN, the normalized density-weighted filtered variables in the neighbouring stencils are taken as the inputs while the outputs are unfiltered density-weighted variables. The SGS stress, SGS heat flux, SGS scalar flux and chemical reaction source terms are modelled using those unfiltered variables which are recovered by the DANN framework to close the governing equations. The DANN framework is evaluated by two chemically reacting compressible isotropic turbulent flow cases adopting a simple one-step irreversible chemical reaction mechanism at turbulent Mach numbers 0.4 and 0.8. In the a priori study, the DANN method shows better performance compared to the classical approximate-deconvolution method (ADM) and the velocity-gradient model (VGM). In the a posteriori test, the DANN method outperforms the dynamic-Smagorinsky model (DSM), and the dynamic-mixed model (DMM). In addition, the DANN framework can predict flow variables with high accuracy by using limited training samples which are constructed from any single instantaneous flow data during the reaction process.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[91952104,92052301,12172161,12161141017,91752201] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103] ; Department of Science and Technology of Guangdong Province[2020B1212030001] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515110845] ; National Numerical Wind tunnel Project[NNW2019ZT1-A04]
WOS研究方向
Thermodynamics ; Engineering ; Mechanics
WOS类目
Thermodynamics ; Engineering, Mechanical ; Mechanics
WOS记录号
WOS:000810178800003
出版者
EI入藏号
20222312190188
EI主题词
Combustion ; Heat flux ; Large eddy simulation ; Turbulence ; Turbulent flow
EI分类号
Fluid Flow:631 ; Fluid Flow, General:631.1 ; Heat Transfer:641.2 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85131137423
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336225
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,511458,China
3.Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Teng,Jian,Yuan,Zelong,Wang,Jianchun. Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence[J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,2022,96.
APA
Teng,Jian,Yuan,Zelong,&Wang,Jianchun.(2022).Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence.INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,96.
MLA
Teng,Jian,et al."Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence".INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW 96(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Teng,Jian]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
百度学术
百度学术中相似的文章
[Teng,Jian]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
必应学术
必应学术中相似的文章
[Teng,Jian]的文章
[Yuan,Zelong]的文章
[Wang,Jianchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。