中文版 | English
题名

Surrogate-Assisted Evolutionary Q-Learning for Black-Box Dynamic Time-Linkage Optimization Problems

作者
发表日期
2022
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Dynamic time-linkage optimization problems (DTPs) are special dynamic optimization problems (DOPs) with the time-linkage property. The environment of DTPs changes not only over time, but also depends on the previous applied solutions. DTPs are hardly solved by existing dynamic evolutionary algorithms because they ignore the time-linkage property. In fact, they can be viewed as multiple decision making problems and solved by reinforcement learning. However, only some discrete DTPs are solved by reinforcement learning based evolutionary optimization algorithms with the assumption of observable objective functions. In this work, we propose a dynamic evolutionary optimization algorithm using surrogate-assisted Q-learning for continuous black-box DTPs. To observe the states of black-box DTPs, the state extraction and prediction methods are applied after the search process at each time step. Based on the learnt information, a surrogate-assisted Q-learning is introduced to evaluate and select candidate solutions in the continuous decision space in a long-term consideration. We evaluate the components of our proposed algorithm on various benchmark problems to study their behaviors. Results of comparative experiments indicate that the proposed algorithm outperforms other compared algorithms and performs robustly on DTPs with up to 30 decision variables and different dynamic changes.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20222412225849
EI主题词
Decision making ; Evolutionary algorithms ; Learning algorithms ; Optimization ; Reinforcement learning
EI分类号
Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Management:912.2 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85131734849
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9785637
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336283
专题南方科技大学
作者单位
1.School of Artificial Intelligence and the Collaborative Innovation Center of Quantum Information of Shaanxi Province, Xidian University, Xi’an 710071, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen 518055, China
3.Chair of Nature Inspired Computing and Engineering, Faculty of Technology, Bielefeld University, D-33615 Bielefeld, Germany
推荐引用方式
GB/T 7714
Zhang,Tuo,Wang,Handing,Yuan,Bo,et al. Surrogate-Assisted Evolutionary Q-Learning for Black-Box Dynamic Time-Linkage Optimization Problems[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,PP(99):1-1.
APA
Zhang,Tuo,Wang,Handing,Yuan,Bo,Jin,Yaochu,&Yao,Xin.(2022).Surrogate-Assisted Evolutionary Q-Learning for Black-Box Dynamic Time-Linkage Optimization Problems.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,PP(99),1-1.
MLA
Zhang,Tuo,et al."Surrogate-Assisted Evolutionary Q-Learning for Black-Box Dynamic Time-Linkage Optimization Problems".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Tuo]的文章
[Wang,Handing]的文章
[Yuan,Bo]的文章
百度学术
百度学术中相似的文章
[Zhang,Tuo]的文章
[Wang,Handing]的文章
[Yuan,Bo]的文章
必应学术
必应学术中相似的文章
[Zhang,Tuo]的文章
[Wang,Handing]的文章
[Yuan,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。