题名 | Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems |
作者 | |
通讯作者 | Lu,Dawei |
发表日期 | 2022
|
DOI | |
发表期刊 | |
EISSN | 2511-9044
|
卷号 | 5 |
摘要 | With the advancement of computing power and algorithms, machine learning has been a powerful tool in numerous applications nowadays. However, the hardware limitation of classical computers and the increasing size of datasets urge the community to explore new techniques for machine learning. Quantum-enhanced machine learning is such a rapidly growing field. It refers to quantum algorithms that are implemented in quantum computers, which can improve the computational speed of classical machine learning tasks and often promises an exponential speedup. In the past few years, the development of experimental quantum technologies leads to many experimental demonstrations of quantum-enhanced machine learning in diverse physical systems. Here, the recent experimental progress in this field in two typical spin-based quantum systems—nuclear magnetic resonance and nitrogen-vacancy centers in diamond—is reviewed, and the ongoing challenges are discussed. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key Research and Development Program of China[2019YFA0308100]
; National Natural Science Foundation of China[12075110,11975117,11905099,11875159,11905111,"U1801661"]
; Guangdong Basic and Applied Basic Research Foundation[2019A1515011383]
; Guangdong International Collaboration Program[2020A0505100001]
; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20190902092905285","KQTD20190929173815000","JCYJ20200109140803865","JCYJ20180302174036418"]
; Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program[2019ZT08C044]
; Guangdong Provincial Key Laboratory[2019B121203002]
|
WOS研究方向 | Physics
; Optics
|
WOS类目 | Quantum Science & Technology
; Optics
|
WOS记录号 | WOS:000809379900001
|
出版者 | |
EI入藏号 | 20222412216736
|
EI主题词 | Machine learning
; Nitrogen
; Nuclear magnetic resonance
; Quantum optics
; Qubits
|
EI分类号 | Machine Learning:723.4.2
; Light, Optics and Optical Devices:741
; Light/Optics:741.1
; Nanotechnology:761
; Chemical Products Generally:804
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85131533423
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/336294 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Wang,Xiangyu,Lin,Zidong,Che,Liangyu,et al. Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems[J]. Advanced Quantum Technologies,2022,5.
|
APA |
Wang,Xiangyu,Lin,Zidong,Che,Liangyu,Chen,Hanyu,&Lu,Dawei.(2022).Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems.Advanced Quantum Technologies,5.
|
MLA |
Wang,Xiangyu,et al."Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems".Advanced Quantum Technologies 5(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论