中文版 | English
题名

Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems

作者
通讯作者Lu,Dawei
发表日期
2022
DOI
发表期刊
EISSN
2511-9044
卷号5
摘要
With the advancement of computing power and algorithms, machine learning has been a powerful tool in numerous applications nowadays. However, the hardware limitation of classical computers and the increasing size of datasets urge the community to explore new techniques for machine learning. Quantum-enhanced machine learning is such a rapidly growing field. It refers to quantum algorithms that are implemented in quantum computers, which can improve the computational speed of classical machine learning tasks and often promises an exponential speedup. In the past few years, the development of experimental quantum technologies leads to many experimental demonstrations of quantum-enhanced machine learning in diverse physical systems. Here, the recent experimental progress in this field in two typical spin-based quantum systems—nuclear magnetic resonance and nitrogen-vacancy centers in diamond—is reviewed, and the ongoing challenges are discussed.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2019YFA0308100] ; National Natural Science Foundation of China[12075110,11975117,11905099,11875159,11905111,"U1801661"] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515011383] ; Guangdong International Collaboration Program[2020A0505100001] ; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20190902092905285","KQTD20190929173815000","JCYJ20200109140803865","JCYJ20180302174036418"] ; Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program[2019ZT08C044] ; Guangdong Provincial Key Laboratory[2019B121203002]
WOS研究方向
Physics ; Optics
WOS类目
Quantum Science & Technology ; Optics
WOS记录号
WOS:000809379900001
出版者
EI入藏号
20222412216736
EI主题词
Machine learning ; Nitrogen ; Nuclear magnetic resonance ; Quantum optics ; Qubits
EI分类号
Machine Learning:723.4.2 ; Light, Optics and Optical Devices:741 ; Light/Optics:741.1 ; Nanotechnology:761 ; Chemical Products Generally:804 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85131533423
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336294
专题理学院_物理系
量子科学与工程研究院
作者单位
Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位物理系;  量子科学与工程研究院
通讯作者单位物理系;  量子科学与工程研究院
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Wang,Xiangyu,Lin,Zidong,Che,Liangyu,et al. Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems[J]. Advanced Quantum Technologies,2022,5.
APA
Wang,Xiangyu,Lin,Zidong,Che,Liangyu,Chen,Hanyu,&Lu,Dawei.(2022).Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems.Advanced Quantum Technologies,5.
MLA
Wang,Xiangyu,et al."Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems".Advanced Quantum Technologies 5(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Xiangyu]的文章
[Lin,Zidong]的文章
[Che,Liangyu]的文章
百度学术
百度学术中相似的文章
[Wang,Xiangyu]的文章
[Lin,Zidong]的文章
[Che,Liangyu]的文章
必应学术
必应学术中相似的文章
[Wang,Xiangyu]的文章
[Lin,Zidong]的文章
[Che,Liangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。