题名 | EXPLORING MACHINE SPEECH CHAIN FOR DOMAIN ADAPTATION |
作者 | |
通讯作者 | Ko,Tom |
DOI | |
发表日期 | 2022
|
会议名称 | 47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
|
ISSN | 1520-6149
|
ISBN | 978-1-6654-0541-6
|
会议录名称 | |
卷号 | 2022-May
|
页码 | 6757-6761
|
会议日期 | 23-27 May 2022
|
会议地点 | Singapore, Singapore
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Machine Speech Chain integrates both end-to-end (E2E) automatic speech recognition (ASR) and neural text-to-speech (TTS) into one circle for joint training. It has been proven that it can effectively leverage a large amount of unpaired data in the spirit of data augmentation. In this paper, we explore the TTS→ASR pipeline in machine speech chain to perform domain adaptation for both E2E ASR and neural TTS models with only text data from the target domain. We conduct experiments by adapting from audiobook domain (i.e., LibriSpeech) to presentation domain (i.e., TED-LIUM). There is a relative word error rate (WER) reduction of 19.7% for the E2E ASR model on the TED-LIUM test set, and a relative WER reduction of 29.4% in synthetic speech generated by neural TTS in the presentation domain. Moreover, we observe that the gains from the proposed method and conventional adaptation methods of language models are additive. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Acoustics
; Computer Science
; Engineering
|
WOS类目 | Acoustics
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000864187907012
|
EI入藏号 | 20222312198862
|
Scopus记录号 | 2-s2.0-85131246775
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746721 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/336303 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Microsoft China,China 3.Peng Cheng Laboratory,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yue,Fengpeng,Deng,Yan,He,Lei,et al. EXPLORING MACHINE SPEECH CHAIN FOR DOMAIN ADAPTATION[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:6757-6761.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论