中文版 | English
题名

Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor

作者
通讯作者Xiang,X. D.; Hu,Kailong; Lin,Xi
发表日期
2022
DOI
发表期刊
ISSN
1932-7447
EISSN
1932-7455
卷号126页码:8922-8927
摘要

Superconductivity allows electric conductance with no energy losses when the ambient temperature drops below a critical value (Tc). Currently, the machine learning (ML)-based prediction of potential superconductors has been limited to chemical formulas without explicit treatment of material structures. Herein, we implement an efficient structural descriptor, the smooth overlap of atomic position (SOAP), into the ML models to predict the Tc values with explicit atomic structural information. Using a data set containing 5713 compounds, our ML models with the SOAP descriptor achieved a 92.9% prediction accuracy of coefficient of determination (R2) score via rigorous multialgorithm cross-verification procedures, exceeding the 86.3% accuracy record without atomic structure information. Several new high-Temperature superconductors with Tc values over 90 K were predicted using the SOAP-Assisted ML model. This study provides insights into the structure-property relationship of high-Temperature superconductors.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Fund of Science and Technology on Reactor Fuel and Materials Laboratory[JCKYS2019201074] ; Shenzhen Knowledge Innovation Plan-Fundamental Research (Discipline Distribution)[JCYJ20180507184623297]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000820336100001
出版者
EI入藏号
20222312187130
EI主题词
Atoms ; Electric Losses ; High Temperature Superconductors ; Machine Learning ; Temperature
EI分类号
Thermodynamics:641.1 ; High Temperature Superconducting Materials:708.3.1 ; Atomic And Molecular Physics:931.3
Scopus记录号
2-s2.0-85131131991
来源库
Scopus
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336314
专题理学院_物理系
工学院_材料科学与工程系
作者单位
1.School of Materials Science and Engineering,Harbin Institute of Technology,Shenzhen,518055,China
2.Blockchain Development and Research Institute,Harbin Institute of Technology,Shenzhen,518055,China
3.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China
4.Department of Materials Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位物理系;  材料科学与工程系
推荐引用方式
GB/T 7714
Zhang,Jingzi,Zhu,Zhuoxuan,Xiang,X. D.,et al. Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor[J]. Journal of Physical Chemistry C,2022,126:8922-8927.
APA
Zhang,Jingzi.,Zhu,Zhuoxuan.,Xiang,X. D..,Zhang,Ke.,Huang,Shangchao.,...&Lin,Xi.(2022).Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor.Journal of Physical Chemistry C,126,8922-8927.
MLA
Zhang,Jingzi,et al."Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor".Journal of Physical Chemistry C 126(2022):8922-8927.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jingzi]的文章
[Zhu,Zhuoxuan]的文章
[Xiang,X. D.]的文章
百度学术
百度学术中相似的文章
[Zhang,Jingzi]的文章
[Zhu,Zhuoxuan]的文章
[Xiang,X. D.]的文章
必应学术
必应学术中相似的文章
[Zhang,Jingzi]的文章
[Zhu,Zhuoxuan]的文章
[Xiang,X. D.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。