题名 | Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor |
作者 | |
通讯作者 | Xiang,X. D.; Hu,Kailong; Lin,Xi |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1932-7447
|
EISSN | 1932-7455
|
卷号 | 126页码:8922-8927 |
摘要 | Superconductivity allows electric conductance with no energy losses when the ambient temperature drops below a critical value (Tc). Currently, the machine learning (ML)-based prediction of potential superconductors has been limited to chemical formulas without explicit treatment of material structures. Herein, we implement an efficient structural descriptor, the smooth overlap of atomic position (SOAP), into the ML models to predict the Tc values with explicit atomic structural information. Using a data set containing 5713 compounds, our ML models with the SOAP descriptor achieved a 92.9% prediction accuracy of coefficient of determination (R2) score via rigorous multialgorithm cross-verification procedures, exceeding the 86.3% accuracy record without atomic structure information. Several new high-Temperature superconductors with Tc values over 90 K were predicted using the SOAP-Assisted ML model. This study provides insights into the structure-property relationship of high-Temperature superconductors. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Fund of Science and Technology on Reactor Fuel and Materials Laboratory[JCKYS2019201074]
; Shenzhen Knowledge Innovation Plan-Fundamental Research (Discipline Distribution)[JCYJ20180507184623297]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000820336100001
|
出版者 | |
EI入藏号 | 20222312187130
|
EI主题词 | Atoms
; Electric Losses
; High Temperature Superconductors
; Machine Learning
; Temperature
|
EI分类号 | Thermodynamics:641.1
; High Temperature Superconducting Materials:708.3.1
; Atomic And Molecular Physics:931.3
|
Scopus记录号 | 2-s2.0-85131131991
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:23
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/336314 |
专题 | 理学院_物理系 工学院_材料科学与工程系 |
作者单位 | 1.School of Materials Science and Engineering,Harbin Institute of Technology,Shenzhen,518055,China 2.Blockchain Development and Research Institute,Harbin Institute of Technology,Shenzhen,518055,China 3.State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China 4.Department of Materials Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 物理系; 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Jingzi,Zhu,Zhuoxuan,Xiang,X. D.,et al. Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor[J]. Journal of Physical Chemistry C,2022,126:8922-8927.
|
APA |
Zhang,Jingzi.,Zhu,Zhuoxuan.,Xiang,X. D..,Zhang,Ke.,Huang,Shangchao.,...&Lin,Xi.(2022).Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor.Journal of Physical Chemistry C,126,8922-8927.
|
MLA |
Zhang,Jingzi,et al."Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor".Journal of Physical Chemistry C 126(2022):8922-8927.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论