中文版 | English
题名

STABLE ESSENTIAL DENSITY FOR ERGODIC HOMOCLINIC CLASSES

其他题名
关于遍历同宿类的稳定必要稠密性
姓名
姓名拼音
JIN Mengzhao
学号
12032850
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
Maria Alejandra Rodriguez Hertz
导师单位
数学系
论文答辩日期
2022-05-05
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
    We study the stable essential density for ergodic homoclinic classes in this paper. This question comes from the research of stable ergodicity.
    Firstly, we give an introduction to hyperbolic dynamics. We introduce the different definitions of hyperbolic set. We prove these different definitions are equivalent. Then we introduce some property about hyperbolic set, which are local maximality, local product structure and shadowing property. Next, We introduce two important results which are 𝜆-lemma and the spectral decomposition theorem. Then we give a proof of the spectral decomposition theorem. We also introduce some contents about partially hyperbolic dynamics.
    Secondly, we introduce ergodic theory. We introduce Poincaré recurrence theorem to help people understand the ergodicity and stable ergodicity. Then we introduce ergodicity and mixing. At last, we introduce weak ergodicity which is possible mechanism helping study stable ergodicity.
    Finally, we give a summary of the proof of the following theorem. For a 𝐶^1 -generic volume preserving diffeomorphism 𝑓 in a closed Riemannian manifold 𝑀, if it has an expanding invariant foliation, then there is an ergodic homoclinic class for 𝑓 which is a hyperbolic ergodic component, and it has stable essential density. This theorem will help study the stable minimality of minimal expanding invariant foliation.
关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] NÚÑEZ G, RODRIGUEZ HERTZ J. Stable minimality of expanding foliations[J]. J Dyn Diff Equat, 2021, 33(4): 2075-2089.
[2] ANOSOV D V, SINAI Y G. Some smooth ergodic systems.[J]. Russ. Math. Surv., 1967, 22(5): 103-167.
[3] AVILA A, CROVISIER S, WILKINSON A. 𝐶^1 density of stable ergodicity[Z]. 2017.
[4] NÚÑEZ G, RODRIGUEZ HERTZ J. Minimality and stable Bernoulliness in dimension 3[J]. Disc. Cont. Dyn. Syst., 2020, 40(3): 1879-1887.
[5] MATHER J N. Characterization of Anosov diffeomorphisms[J]. Indagationes Mathematicae (Proceedings), 1968, 71: 479-483.
[6] BRIN M, STUCK G. Introduction to dynamical systems[M]. Cambridge, U.K ; New York: Cambridge University Press, 2002.
[7] KATOK A, HASSELBLATT B. Introduction to the modern theory of dynamical systems[M]. Cambridge, U.K ; New York: Cambridge University Press, 1997.
[8] VIANA M, OLIVEIRA K. Foundations of ergodic theory[M]. Cambridge, U.K ; New York: Cambridge University Press, 2016.
[9] BURNS K, DOLGOPYAT D, PESIN Y. Partial hyperbolicity, Lyapunov exponents and stable ergodicity[J]. J Stat Phys, 2002, 108: 927-942.
[10] OBATA D. On the stable ergodicity of diffeomorphisms with dominated splitting[J]. Nonlinearity, 2019, 32(2): 445-463.
[11] LEE J M. Introduction to Smooth Manifolds[M]. New York: Springer New York, 2012.
[12] PESIN Y B. Characteristic Lyapunov exponents and smooth ergodic theory[J]. Russ. Math. Surv, 1977, 32(4): 55-114.
[13] MANÉ R. Ergodic theory and differentiable dynamics[M]. New York: Springer Science & Business Media, 2012.
[14] PUGH C C. The 𝐶^(1+𝛼) hypothesis in Pesin theory[J]. Publ. Math. IHES, 1984, 59: 143-161.
[15] RODRIGUEZ HERTZ F, RODRIGUEZ HERTZ M A, TAHZIBI A, et al. New criteria for ergodicity and nonuniform hyperbolicity[J]. Duke Math. J., 2011, 160(3): 599-629.
[16] AVILA A, CROVISIER S, WILKINSON A. Diffeomorphisms with positive metric entropy[J]. Publ.Math.IHES, 2016, 124(1): 319-347.
[17] BOCHI J. Genericity of zero Lyapunov exponents[J]. Ergod. Th. Dynam. Sys., 2002, 22(6): 1667-1696.
[18] RODRIGUEZ HERTZ M A. Genericity of nonuniform hyperbolicity in dimension 3[J]. J. Mod. Dyn., 2012, 6(1): 121-138.
[19] MANÉ R. Oseledec’s theorem from the generic viewpoint[J]. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2(Warsaw 1983)pp 1269–1276. PWN, Warsaw, 1984.
[20] MOREIRA C, SILVA W. On the geometry of horseshoes in higher dimensions[Z]. 2012.
[21] RUELLE D. An inequality for the entropy of differentiable maps[J]. Bol. Soc. Bras. Mat, 1978, 9(1): 83-87.
[22] TAHZIBI A. 𝐶^1-generic Pesin’s entropy formula.[J]. C. R. Acad. Sci., 2002, 335: 1057-1062.
[23] SUN X, TIAN X. Dominated splitting and Pesin’s entropy formula[J]. Discrete Contin. Dyn. Syst., 2012, 32: 1421-1434.
[24] ABDENUR F, CROVISIER S. Transitivity and topological mixing for 𝐶1 diffeomorphisms[Z]. 2016.
[25] AVILA A, BOCHI J. Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms[J]. Trans. Amer. Math. Soc., 2012, 364(6): 2883-2907.

所在学位评定分委会
数学系
国内图书分类号
O192
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336332
专题理学院_数学系
推荐引用方式
GB/T 7714
Jin MZ. STABLE ESSENTIAL DENSITY FOR ERGODIC HOMOCLINIC CLASSES[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032850-金蒙召-数学系.pdf(809KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[金蒙召]的文章
百度学术
百度学术中相似的文章
[金蒙召]的文章
必应学术
必应学术中相似的文章
[金蒙召]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。