[1] KINGSTON C, PALKOWITZ M D, TAKAHIRA Y, et al. A survival guide for the “electrocurious”[J]. Acc Chem Res, 2020, 53(1):72-83.
[2] FRANCKE R, LITTLE R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem Soc Rev, 2014, 43(8):2492-2521.
[3] YAN M, KAWAMATA Y, BARAN P S. Synthetic organic electrochemical methods since 2000:on the verge of a renaissance[J]. Chem Rev, 2017, 117(21):13230-13319.
[4] LI J, HUANG W, CHEN J, et al. Electrochemical aziridination by alkene activation using a sulfamate as the nitrogen source[J]. Angew Chem Int Ed, 2018, 57(20):5695-5698.
[5] LI C, KAWAMATA Y, NAKAMURA H, et al. Electrochemically enabled, Nickel-catalyzed amination[J]. Angew Chem Int Ed, 2017, 56(42):13088-13093.
[6] WANG H, GAO X, LV Z, et al. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry[J]. Chem Rev, 2019, 119(12):6769-6787.
[7] YUAN Y, LEI A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions[J]. Acc Chem Res, 2019, 52(12):3309-3324.
[8] RöCKL J L, POLLOK D, FRANKE R, et al. A decade of electrochemical dehydrogenative C,Ccoupling of aryls[J]. Acc Chem Res, 2020, 53(1):45-61.
[9] REIN J, ANNAND J R, WISMER M K, et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor[J]. ACS Cent Sci, 2021, 7(8):1347-1355.
[10] LONG H, SONG J, XU H-C. Electrochemical synthesis of 7-membered carbocycles through cascade 5-exo-trig/7-endo-trig radical cyclization[J]. Org Chem Front, 2018, 5(21):3129-3132.
[11] HUANG X, ZHANG Q, LIN J, et al. Electricity-driven asymmetric lewis acid catalysis[J]. Nat Catal, 2018, 2(1):34-40.
[12] SHINDE D B, SALUNKE J K, CANDEIAS N R, et al. Crystallisation-enhanced bulk hole mobility in phenothiazine-based organic semiconductors[J]. Sci Rep, 2017, 7(1):46268.
[13] YU J, MA H, HUANG W, et al. Purely organic room-temperature phosphorescence endowing fast intersystem crossing from through-space spin–orbit coupling[J]. JACS Au, 2021, 1(10):1694-1699.
[14] TIAN Y, YANG J, LIU Z, et al. Multistage stimulus-responsive room temperature phosphorescence based on host–guest doping systems[J]. Angew Chem Int Ed, 2021, 60(37):20259-20263.
[15] ROMERO N A, NICEWICZ D A. Organic photoredox catalysis[J]. Chem Rev, 2016, 116(17):10075-10166.
[16] CHRISTENSEN J A, PHELAN B T, CHAUDHURI S, et al. Phenothiazine radical cation excited states as super-oxidants for energy-demanding reactions[J]. J Am Chem Soc, 2018, 140(15):5290-5299.
[17] GONG H, ZHAO Y, SHEN X, et al. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light[J]. Angew Chem Int Ed, 2018, 57(1):333-337.
[18] MCCARTHY B, MIYAKE G M. Organocatalyzed atom transfer radical polymerization catalyzed by core modified N-aryl phenoxazines performed under air[J]. ACS Macro Lett, 2018, 7(8):1016-1021.
[19] NARUPAI B, PAGE Z A, TREAT N J, et al. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes[J]. Angew Chem Int Ed, 2018, 57(41):13433-13438.
[20] WANG H, JUI N T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes[J]. J Am Chem Soc, 2018, 140(1):163-166.
[21] BOYINGTON A J, SEATH C P, ZEARFOSS A M, et al. Catalytic strategy for regioselective arylethylamine synthesis[J]. J Am Chem Soc, 2019, 141(9):4147-4153.
[22] AUKLAND M H, ŠIAUČIULIS M, WEST A, et al. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted pummerer activation[J]. Nat Catal, 2020, 3(2):163-169.
[23] TREAT N J, SPRAFKE H, KRAMER J W, et al. Metal-free atom transfer radicalpolymerization[J]. J Am Chem Soc, 2014, 136(45):16096-16101.
[24] PAN X, FANG C, FANTIN M, et al. Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies[J]. J Am Chem Soc, 2016, 138(7):2411-2425.
[25] PEARSON R M, LIM C H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. J Am Chem Soc, 2016, 138(35):11399-11407.
[26] SARTOR S M, MCCARTHY B G, PEARSON R M, et al. Exploiting charge-transfer states for maximizing intersystem crossing yields in organic photoredox catalysts[J]. J Am Chem Soc, 2018, 140(14):4778-4781.
[27] SARTOR S M, LATTKE Y M, MCCARTHY B G, et al. Effects of naphthyl connectivity on the photophysics of compact organic charge-transfer photoredox catalysts[J]. J Phys Chem A, 2019, 123(22):4727-4736.
[28] SARTOR S M, CHRISMAN C H, PEARSON R M, et al. Designing high-triplet-yield phenothiazine donor-acceptor complexes for photoredox catalysis[J]. J Phys Chem A, 2020, 124(5):817-823.
[29] HALLOCK Y F, MANFREDI K P, BLUNT J W, et al. Korupensamines A-D, novel antimalarial alkaloids from ancistrocladus korupensis[J]. J Org Chem, 1994, 59(21):6349-6355.
[30] YONEZAWA S, KOMURASAKI T, KAWADA K, et al. Total synthesis of terprenin, a novel immunosuppressive p-terphenyl derivative[J]. J Org Chem, 1998, 63(17):5831-5837.
[31] PARMAR D, SUGIONO E, RAJA S, et al. Complete field guide to asymmetric binol-phosphate derived brønsted acid and metal catalysis: history and classification by mode of activation; brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates[J]. Chem Rev, 2014, 114(18):9047-9153.
[32] CRAM DONALD J, CRAM JANE M. Host-guest chemistry[J]. science, 1974, 183(4127):803-809.
[33] COLLINS B S L, KISTEMAKER J C M, OTTEN E, et al. A chemically powered unidirectional rotary molecular motor based on a Palladium redox cycle[J]. Nat Chem, 2016, 8(9):860-866.
[34] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations[J]. Chem Rev, 2015, 115(20):11239-11300.
[35] WANG Y-B, TAN B. Construction of axially chiral compounds via asymmetricorganocatalysis[J]. Acc Chem Res, 2018, 51(2):534-547.
[36] AKIYAMA T. Stronger brønsted acids[J]. Chem Rev, 2007, 107(12):5744-5758.
[37] WU X, HAN X, XU Q, et al. Chiral binol-based covalent organic frameworks for enantioselective sensing[J]. J Am Chem Soc, 2019, 141(17):7081-7089.
[38] TAKAISHI K, YASUI M, EMA T. Binaphthyl–bipyridyl cyclic dyads as a chiroptical switch[J]. J Am Chem Soc, 2018, 140(16):5334-5338.
[39] WEN K, YU S, HUANG Z, et al. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines[J]. J Am Chem Soc, 2015, 137(13):4517-4524.
[40] BARIWAL J, VAN DER EYCKEN E. C–N bond forming cross-coupling reactions: an overview[J]. Chem Soc Rev, 2013, 42(24):9283-9303.
[41] ULLMANN F. Ueber eine neue bildungsweise von diphenylaminderivaten[J]. Ber Dtsch Chem Ges, 1903, 36(2):2382-2384.
[42] SURRY D S, BUCHWALD S L. Biaryl phosphane ligands in Palladium-catalyzed amination[J]. Angew Chem Int Ed, 2008, 47(34):6338-6361.
[43] HARTWIG J F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides[J]. Acc Chem Res, 2008, 41(11):1534-1544.
[44] SURRY D S, BUCHWALD S L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide[J]. Chem Sci, 2011, 2(1):27-50.
[45] DAHL T, TORNøE C W, BANG-ANDERSEN B, et al. Palladium-catalyzed three-component approach to promazine with formation of one carbon–sulfur and two carbon–nitrogen bonds[J]. Angew Chem Int Ed, 2008, 47(9):1726-1728.
[46] LOUILLAT-HABERMEYER M L, JIN R, PATUREAU F W. O2-mediated dehydrogenative amination of phenols[J]. Angew Chem Int Ed, 2015, 54(13):4102-4104.
[47] GOSWAMI M, KONKEL A, RAHIMI M, et al. Mechanism of the dehydrogenative phenothiazination of phenols[J]. Chem Eur J, 2018, 24(46):11936-11943.
[48] PATUREAU F W. The phenol-phenothiazine coupling: an oxidative click concept[J].ChemCatChem, 2019, 11(21):5227-5231.
[49] CHEN J, LI G, XIE Y, et al. Four-component approach to N-substituted phenothiazines under transition-metal-free conditions[J]. Org Lett, 2015, 17(23):5870-5873.
[50] ZHAO Y, HUANG B, YANG C, et al. Visible-light-promoted direct amination of phenols via oxidative cross-dehydrogenative coupling reaction[J]. Org Lett, 2016, 18(14):3326-3329.
[51] JIN R, PATUREAU F W. Mild, periodate-mediated, dehydrogenative C-N bond formation with phenothiazines and phenols[J]. Org Lett, 2016, 18(18):4491-4493.
[52] ZHAO Y, HUANG B, YANG C, et al. Photocatalytic cross-dehydrogenative amination reactions between phenols and diarylamines[J]. ACS Catal, 2017, 7(4):2446-2451.
[53] TANG S, WANG S, LIU Y, et al. Electrochemical oxidative C-H amination of phenols: access to triarylamine derivatives[J]. Angew Chem Int Ed, 2018, 57(17):4737-4741.
[54] JIN R, BUB C L, PATUREAU F W. Phenothiazinimides: atom-efficient electrophilic amination reagents[J]. Org Lett, 2018, 20(10):2884-2887.
[55] BERING L, D'OTTAVIO L, SIRVINSKAITE G, et al. Nitrosonium ion catalysis: aerobic, metalfree cross-dehydrogenative carbon-heteroatom bond formation[J]. Chem Commun, 2018, 54(92):13022-13025.
[56] LIU K, TANG S, WU T, et al. Electrooxidative para-selective C-H/N-H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives[J]. Nat Commun, 2019, 10(1):639.
[57] WU Y C, JIANG S S, SONG R J, et al. A metal- and oxidizing-reagent-free anodic para-selective amination of anilines with phenothiazines[J]. Chem Commun 2019, 55(30):4371-4374.
[58] VEMURI P Y, WANG Y, PATUREAU F W. Para-selective dehydrogenative phenothiazination of hydroquinolines and indolines[J]. Org Lett, 2019, 21(24):9856-9859.
[59] CREMER C, GOSWAMI M, RANK C K, et al. Tellurium(II)/Tellurium(III)-catalyzed crossdehydrogenative C-N bond formation[J]. Angew Chem Int Ed, 2021, 60(12):6451-6456.
[60] MATSUZAWA T, HOSOYA T, YOSHIDA S. Transition-metal-free synthesis of Narylphenothiazines through an N- and S-arylation sequence[J]. Org Lett, 2021, 23(6):2347-2352.
[61] XIA W, ZHOU Z-A, LV J, et al. Facile synthesis of N-aryl phenothiazines and phenoxazines via brønsted acid catalyzed C–H amination of arenes[J]. Chem Commun, 2022, 58(10):1613-1616.
[62] TODA F, TANAKA K, IWATA S. Oxidative coupling reactions of phenols with iron(III) chloride in the solid state[J]. J Org Chem, 1989, 54(13):3007-3009.
[63] FERINGA B, WYNBERG H. Asymmetric phenol oxidation. stereospecific and stereoselective oxidative coupling of a chiral tetrahydronaphthol[J]. J Org Chem, 1981, 46(12):2547-2557.
[64] SHAN Z X, WANG G P, DUAN B, et al. Preparation of enantiomerically pure 1,1'-bi-2-naphthol via cyclic borate ester[J]. Tetrahedron: Asymmetry, 1996, 7(10):2847-2850.
[65] WANG Y, SUN J, DING K L. Practical method and novel mechanism for optical resolution of binol by molecular complexation with n-benzylcinchoninium chloride[J]. Tetrahedron, 2000, 56(26):4447-4451.
[66] HON S-W, LI C-H, KUO J-H, et al. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium(iv) complexes[J]. Org Lett, 2001, 3(6):869-872.
[67] LI X, YANG J, KOZLOWSKI M C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes[J]. Org Lett, 2001, 3(8):1137-1140.
[68] LUO Z, LIU Q, GONG L, et al. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols[J]. Chem Commun, 2002, (8):914-915.
[69] BARHATE N B, CHEN C-T. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates[J]. Org Lett, 2002, 4(15):2529-2532.
[70] LUO Z B, LIU Q Z, GONG L Z, et al. Novel achiral biphenol-derived diastereomeric oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols[J]. Angew Chem Int Ed, 2002, 41(23):4532-4535.
[71] CHU C Y, UANG B J. Catalytic enantioselective coupling of 2-naphthols by new chiral oxovanadium complexes bearing a self accelerating functional group[J]. Tetrahedron: Asymmetry, 2003, 14(1):53-55.
[72] MALKOWSKY I M, ROMMEL C E, FRöHLICH R, et al. Novel template-directed anodic phenol-coupling reaction[J]. Chem Eur J, 2006, 12(28):7482-7488.
[73] MALKOWSKY I M, GRIESBACH U, PüTTER H, et al. Unexpected highly chemoselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes[J]. Eur J Org Chem, 2006, 2006(20):4569-4572.
[74] KIRSTE A, NIEGER M, MALKOWSKY I M, et al. Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols[J]. Chem Eur J, 2009, 15(10):2273-2277.
[75] ELSLER B, SCHOLLMEYER D, DYBALLA K M, et al. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols[J]. Angew Chem Int Ed, 2014, 53(20):5210-5213.
[76] RöCKL J L, SCHOLLMEYER D, FRANKE R, et al. Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups[J]. Angew Chem Int Ed, 2020, 59(1):315-319.
[77] GUO Q-X, WU Z-J, LUO Z-B, et al. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant[J]. J Am Chem Soc, 2007, 129(45):13927-13938.
[78] EGAMI H, KATSUKI T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2- naphthols[J]. J Am Chem Soc, 2009, 131(17):6082-6083.
[79] CHEN Y-H, CHENG D-J, ZHANG J, et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols[J]. J Am Chem Soc, 2015, 137(48):15062-15065.
[80] WANG J-Z, ZHOU J, XU C, et al. Symmetry in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to binol derivatives[J]. J Am Chem Soc, 2016, 138(16):5202-5205.
[81] MOLITERNO M, CARI R, PUGLISI A, et al. Quinine-catalyzed asymmetric synthesis of 2,2'- binaphthol-type biaryls under mild reaction conditions[J]. Angew Chem Int Ed, 2016, 55(22):6525-6529.
[82] NARUTE S, PARNES R, TOSTE F D, et al. Enantioselective oxidative homocoupling and crosscoupling of 2-naphthols catalyzed by chiral iron phosphate complexes[J]. J Am Chem Soc, 2016, 138(50):16553-16560.
[83] WANG Q-Q, JIANG Y-Y, ZENG C-C, et al. Electrocatalytic synthesis of non-symmetric biphenols mediated by tri(p-bromophenyl)amine: selective oxidative cross-coupling of different phenols and naphthols[J]. Chin J Chem, 2019, 37(4):352-358.
[84] TIAN J-M, WANG A-F, YANG J-S, et al. Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: enantioselective synthesis of 3,3'-substituted C1- symmetric binols[J]. Angew Chem Int Ed, 2019, 58(32):11023-11027.
[85] QIU H, SHUAI B, WANG Y-Z, et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers[J]. J Am Chem Soc, 2020, 142(22):9872-9878.
[86] NIEDERER K A, GILMARTIN P H, KOZLOWSKI M C. Oxidative photocatalytic homo- and cross-coupling of phenols: nonenzymatic, catalytic method for coupling tyrosine[J]. ACS Catal, 2020, 10(24):14615-14623.
[87] ZHANG J-W, JIANG F, CHEN Y-H, et al. Synthesis of structurally diversified binols and nobins via Palladium-catalyzed C-H arylation with diazoquinones[J]. Sci China Chem, 2021, 64(9):1515-1521.
[88] ZETZSCHE L E, YAZARIANS J A, CHAKRABARTY S, et al. Biocatalytic oxidative crosscoupling reactions for biaryl bond formation[J]. Nature, 2022, 603(7899):79-85.
[89] ZHANG H, WANG S C, WANG X Y, et al. K2S2O8-induced site-selectivephenoxazination/phenothiazination of electron-rich anilines[J]. Green Chem, 2022, 24(1):147-151.
[90] VEMURI P Y, CREMER C, PATUREAU F W. Te(II)-catalyzed cross-dehydrogenative phenothiazination of anilines[J]. Org Lett, 2022, 24(8):1626-1630.
[91] PODDAR M, CESARETTI A, FERRAGUZZI E, et al. Singlet and triplet excited-state dynamics of 3,7-bis(arylethynyl)phenothiazines: intramolecular charge transfer and reverse intersystem crossing[J]. J Phys Chem C, 2020, 124(33):17864-17878.
[92] SARTOR S M, CHRISMAN C H, PEARSON R M, et al. Designing high-triplet-yield phenothiazine donor–acceptor complexes for photoredox catalysis[J]. J Phys Chem A, 2020, 124(5):817-823.
[93] JIA H, HE M, YANG S, et al. Visible-light-driven di-t-butyl peroxide-promoted the oxidative homo- and cross-coupling of phenols[J]. Eur J Org Chem, 2022, 10.1002/ejoc.202101469.
[94] CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angew Chem Int Ed, 2017, 56(51):16308-16312.
[95] CHEN M-C, LEE Y-L, HUANG Z-X, et al. Tuning electron-withdrawing strength on phenothiazine derivatives: achieving 100 % photoluminescence quantum yield by NO2 substitution[J]. Chem Eur J, 2020, 26(31):7124-7130.
[96] CHEN Y-H, LI H-H, ZHANG X, et al. Organocatalytic enantioselective synthesis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols[J]. Angew Chem Int Ed, 2020, 59(28):11374-11378.
修改评论