中文版 | English
题名

电化学催化的吩噻嗪与萘酚的芳基化反应

其他题名
ELECTROCATALYTIC ARYLATION OF PHENOTHIAZINES AND NAPHTHOLS
姓名
姓名拼音
CHEN Song
学号
11930508
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
谭斌
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电化学有机合成将电解过程与传统有机合成相结合,具备反应高效、条件温和、原子经济性高等诸多优点,深受合成化学家的青睐,于近年来得到了快速发展,是一项有广大应用前景的新兴绿色化学技术。

N-芳基吩噻嗪与联芳基二酚均是在有机合成化学及材料化学领域得到广泛应用的明星分子,其合成策略受到人们的密切关注与深入研究。然而,已发展的合成手段仍有一定的局限性,如使用当量的氧化剂、原子经济性差、底物范围窄等,因此开发其高效合成方法仍具备重要的研究价值与现实意义。

本文以开发新型电化学合成技术为目的,发展了电化学芳基化反应,实现了N-芳基吩噻嗪与联芳基二酚骨架的快速构筑,反应均具备优异的产率及底物适用性。在电化学催化的吩噻嗪芳基化反应中,高效完成了吩噻嗪与萘胺的交叉脱氢偶联,产率高达98%,借助循环伏安及电子顺磁共振实验提出了可能的自由基反应机理。目标产物不仅可替代商用的N-苯基吩噻嗪光敏剂,也能一步转化为有机磷光材料客体分子,均表现出优秀的实际性能,凸显出该合成策略在有机化学与材料科学领域的应用潜力。

萘酚的电化学芳基化反应在碱的催化下生成联芳基二酚,产率高达88%。引入金鸡纳碱衍生物作为手性催化剂可实现该反应的不对称控制,合成轴手性联芳基二酚化合物,对映选择性最高可达65%,为电化学合成技术与不对称催化的融合发展提供了可靠范例。

其他摘要

Electrochemical organic synthesis combines electrolysis with traditional organic synthesis and features advantages, such as high reaction efficiency, mild conditions and high atom economy. It has been increasingly adopted by synthetic chemists and rapidly developed in recent years as a sustainable technology with vast uncharted potential.

Both N-aryl phenothiazines and biaryldiols are privileged molecules with a wide range of applications in organic synthetic chemistry and materials chemistry. Despite the substantial research focuses and advancements, the developed synthetic routes still suffer from some limitations, including the use of stoichiometric oxidants, inferior atom economy and poor substrate scopes. Therefore, it is of great scientific value and utility to develop novel and efficient synthetic alternatives.

In this thesis, with the purpose of exploring innovative electrochemical synthetic techniques, novel electrochemical arylation reaction was developed to synthesize N-aryl phenothiazines and biaryldiols efficiently, as reflected by the excellent yields and substrate scopes. The cross-dehydrogenative coupling of phenothiazines with naphthylamines was successfully accomplished in electrocatalytic arylation of phenothiazines with up to 98% yield, and a plausible radical mechanism was proposed based on cyclic voltammetry and electron paramagnetic resonance experiments. The target products could be used not only as better photocatalysts than commercially available N-phenyl phenothiazine, but also as guest molecules for organic phosphorescent materials after one-step conversion. Both applications showed superior performance, which revealed the great potential of this synthetic strategy for applications in organic chemistry and materials chemistry.

In other development, a base-catalyzed electrochemical arylation of naphthols has been accomplished to obtain biaryldiols with up to 88% yield. Furthermore, by introducing cinchona alkaloids as the chiral catalyst, the corresponding asymmetric manifold was also investigated to synthesize axially chiral biaryldiols with up to 65% enantiomeric excess, which provided a reliable model for integrating electrochemical synthesis with asymmetric catalysis.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] KINGSTON C, PALKOWITZ M D, TAKAHIRA Y, et al. A survival guide for the “electrocurious”[J]. Acc Chem Res, 2020, 53(1):72-83.
[2] FRANCKE R, LITTLE R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem Soc Rev, 2014, 43(8):2492-2521.
[3] YAN M, KAWAMATA Y, BARAN P S. Synthetic organic electrochemical methods since 2000:on the verge of a renaissance[J]. Chem Rev, 2017, 117(21):13230-13319.
[4] LI J, HUANG W, CHEN J, et al. Electrochemical aziridination by alkene activation using a sulfamate as the nitrogen source[J]. Angew Chem Int Ed, 2018, 57(20):5695-5698.
[5] LI C, KAWAMATA Y, NAKAMURA H, et al. Electrochemically enabled, Nickel-catalyzed amination[J]. Angew Chem Int Ed, 2017, 56(42):13088-13093.
[6] WANG H, GAO X, LV Z, et al. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry[J]. Chem Rev, 2019, 119(12):6769-6787.
[7] YUAN Y, LEI A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions[J]. Acc Chem Res, 2019, 52(12):3309-3324.
[8] RöCKL J L, POLLOK D, FRANKE R, et al. A decade of electrochemical dehydrogenative C,Ccoupling of aryls[J]. Acc Chem Res, 2020, 53(1):45-61.
[9] REIN J, ANNAND J R, WISMER M K, et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor[J]. ACS Cent Sci, 2021, 7(8):1347-1355.
[10] LONG H, SONG J, XU H-C. Electrochemical synthesis of 7-membered carbocycles through cascade 5-exo-trig/7-endo-trig radical cyclization[J]. Org Chem Front, 2018, 5(21):3129-3132.
[11] HUANG X, ZHANG Q, LIN J, et al. Electricity-driven asymmetric lewis acid catalysis[J]. Nat Catal, 2018, 2(1):34-40.
[12] SHINDE D B, SALUNKE J K, CANDEIAS N R, et al. Crystallisation-enhanced bulk hole mobility in phenothiazine-based organic semiconductors[J]. Sci Rep, 2017, 7(1):46268.
[13] YU J, MA H, HUANG W, et al. Purely organic room-temperature phosphorescence endowing fast intersystem crossing from through-space spin–orbit coupling[J]. JACS Au, 2021, 1(10):1694-1699.
[14] TIAN Y, YANG J, LIU Z, et al. Multistage stimulus-responsive room temperature phosphorescence based on host–guest doping systems[J]. Angew Chem Int Ed, 2021, 60(37):20259-20263.
[15] ROMERO N A, NICEWICZ D A. Organic photoredox catalysis[J]. Chem Rev, 2016, 116(17):10075-10166.
[16] CHRISTENSEN J A, PHELAN B T, CHAUDHURI S, et al. Phenothiazine radical cation excited states as super-oxidants for energy-demanding reactions[J]. J Am Chem Soc, 2018, 140(15):5290-5299.
[17] GONG H, ZHAO Y, SHEN X, et al. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light[J]. Angew Chem Int Ed, 2018, 57(1):333-337.
[18] MCCARTHY B, MIYAKE G M. Organocatalyzed atom transfer radical polymerization catalyzed by core modified N-aryl phenoxazines performed under air[J]. ACS Macro Lett, 2018, 7(8):1016-1021.
[19] NARUPAI B, PAGE Z A, TREAT N J, et al. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes[J]. Angew Chem Int Ed, 2018, 57(41):13433-13438.
[20] WANG H, JUI N T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes[J]. J Am Chem Soc, 2018, 140(1):163-166.
[21] BOYINGTON A J, SEATH C P, ZEARFOSS A M, et al. Catalytic strategy for regioselective arylethylamine synthesis[J]. J Am Chem Soc, 2019, 141(9):4147-4153.
[22] AUKLAND M H, ŠIAUČIULIS M, WEST A, et al. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted pummerer activation[J]. Nat Catal, 2020, 3(2):163-169.
[23] TREAT N J, SPRAFKE H, KRAMER J W, et al. Metal-free atom transfer radicalpolymerization[J]. J Am Chem Soc, 2014, 136(45):16096-16101.
[24] PAN X, FANG C, FANTIN M, et al. Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies[J]. J Am Chem Soc, 2016, 138(7):2411-2425.
[25] PEARSON R M, LIM C H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. J Am Chem Soc, 2016, 138(35):11399-11407.
[26] SARTOR S M, MCCARTHY B G, PEARSON R M, et al. Exploiting charge-transfer states for maximizing intersystem crossing yields in organic photoredox catalysts[J]. J Am Chem Soc, 2018, 140(14):4778-4781.
[27] SARTOR S M, LATTKE Y M, MCCARTHY B G, et al. Effects of naphthyl connectivity on the photophysics of compact organic charge-transfer photoredox catalysts[J]. J Phys Chem A, 2019, 123(22):4727-4736.
[28] SARTOR S M, CHRISMAN C H, PEARSON R M, et al. Designing high-triplet-yield phenothiazine donor-acceptor complexes for photoredox catalysis[J]. J Phys Chem A, 2020, 124(5):817-823.
[29] HALLOCK Y F, MANFREDI K P, BLUNT J W, et al. Korupensamines A-D, novel antimalarial alkaloids from ancistrocladus korupensis[J]. J Org Chem, 1994, 59(21):6349-6355.
[30] YONEZAWA S, KOMURASAKI T, KAWADA K, et al. Total synthesis of terprenin, a novel immunosuppressive p-terphenyl derivative[J]. J Org Chem, 1998, 63(17):5831-5837.
[31] PARMAR D, SUGIONO E, RAJA S, et al. Complete field guide to asymmetric binol-phosphate derived brønsted acid and metal catalysis: history and classification by mode of activation; brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates[J]. Chem Rev, 2014, 114(18):9047-9153.
[32] CRAM DONALD J, CRAM JANE M. Host-guest chemistry[J]. science, 1974, 183(4127):803-809.
[33] COLLINS B S L, KISTEMAKER J C M, OTTEN E, et al. A chemically powered unidirectional rotary molecular motor based on a Palladium redox cycle[J]. Nat Chem, 2016, 8(9):860-866.
[34] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations[J]. Chem Rev, 2015, 115(20):11239-11300.
[35] WANG Y-B, TAN B. Construction of axially chiral compounds via asymmetricorganocatalysis[J]. Acc Chem Res, 2018, 51(2):534-547.
[36] AKIYAMA T. Stronger brønsted acids[J]. Chem Rev, 2007, 107(12):5744-5758.
[37] WU X, HAN X, XU Q, et al. Chiral binol-based covalent organic frameworks for enantioselective sensing[J]. J Am Chem Soc, 2019, 141(17):7081-7089.
[38] TAKAISHI K, YASUI M, EMA T. Binaphthyl–bipyridyl cyclic dyads as a chiroptical switch[J]. J Am Chem Soc, 2018, 140(16):5334-5338.
[39] WEN K, YU S, HUANG Z, et al. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines[J]. J Am Chem Soc, 2015, 137(13):4517-4524.
[40] BARIWAL J, VAN DER EYCKEN E. C–N bond forming cross-coupling reactions: an overview[J]. Chem Soc Rev, 2013, 42(24):9283-9303.
[41] ULLMANN F. Ueber eine neue bildungsweise von diphenylaminderivaten[J]. Ber Dtsch Chem Ges, 1903, 36(2):2382-2384.
[42] SURRY D S, BUCHWALD S L. Biaryl phosphane ligands in Palladium-catalyzed amination[J]. Angew Chem Int Ed, 2008, 47(34):6338-6361.
[43] HARTWIG J F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides[J]. Acc Chem Res, 2008, 41(11):1534-1544.
[44] SURRY D S, BUCHWALD S L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide[J]. Chem Sci, 2011, 2(1):27-50.
[45] DAHL T, TORNøE C W, BANG-ANDERSEN B, et al. Palladium-catalyzed three-component approach to promazine with formation of one carbon–sulfur and two carbon–nitrogen bonds[J]. Angew Chem Int Ed, 2008, 47(9):1726-1728.
[46] LOUILLAT-HABERMEYER M L, JIN R, PATUREAU F W. O2-mediated dehydrogenative amination of phenols[J]. Angew Chem Int Ed, 2015, 54(13):4102-4104.
[47] GOSWAMI M, KONKEL A, RAHIMI M, et al. Mechanism of the dehydrogenative phenothiazination of phenols[J]. Chem Eur J, 2018, 24(46):11936-11943.
[48] PATUREAU F W. The phenol-phenothiazine coupling: an oxidative click concept[J].ChemCatChem, 2019, 11(21):5227-5231.
[49] CHEN J, LI G, XIE Y, et al. Four-component approach to N-substituted phenothiazines under transition-metal-free conditions[J]. Org Lett, 2015, 17(23):5870-5873.
[50] ZHAO Y, HUANG B, YANG C, et al. Visible-light-promoted direct amination of phenols via oxidative cross-dehydrogenative coupling reaction[J]. Org Lett, 2016, 18(14):3326-3329.
[51] JIN R, PATUREAU F W. Mild, periodate-mediated, dehydrogenative C-N bond formation with phenothiazines and phenols[J]. Org Lett, 2016, 18(18):4491-4493.
[52] ZHAO Y, HUANG B, YANG C, et al. Photocatalytic cross-dehydrogenative amination reactions between phenols and diarylamines[J]. ACS Catal, 2017, 7(4):2446-2451.
[53] TANG S, WANG S, LIU Y, et al. Electrochemical oxidative C-H amination of phenols: access to triarylamine derivatives[J]. Angew Chem Int Ed, 2018, 57(17):4737-4741.
[54] JIN R, BUB C L, PATUREAU F W. Phenothiazinimides: atom-efficient electrophilic amination reagents[J]. Org Lett, 2018, 20(10):2884-2887.
[55] BERING L, D'OTTAVIO L, SIRVINSKAITE G, et al. Nitrosonium ion catalysis: aerobic, metalfree cross-dehydrogenative carbon-heteroatom bond formation[J]. Chem Commun, 2018, 54(92):13022-13025.
[56] LIU K, TANG S, WU T, et al. Electrooxidative para-selective C-H/N-H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives[J]. Nat Commun, 2019, 10(1):639.
[57] WU Y C, JIANG S S, SONG R J, et al. A metal- and oxidizing-reagent-free anodic para-selective amination of anilines with phenothiazines[J]. Chem Commun 2019, 55(30):4371-4374.
[58] VEMURI P Y, WANG Y, PATUREAU F W. Para-selective dehydrogenative phenothiazination of hydroquinolines and indolines[J]. Org Lett, 2019, 21(24):9856-9859.
[59] CREMER C, GOSWAMI M, RANK C K, et al. Tellurium(II)/Tellurium(III)-catalyzed crossdehydrogenative C-N bond formation[J]. Angew Chem Int Ed, 2021, 60(12):6451-6456.
[60] MATSUZAWA T, HOSOYA T, YOSHIDA S. Transition-metal-free synthesis of Narylphenothiazines through an N- and S-arylation sequence[J]. Org Lett, 2021, 23(6):2347-2352.
[61] XIA W, ZHOU Z-A, LV J, et al. Facile synthesis of N-aryl phenothiazines and phenoxazines via brønsted acid catalyzed C–H amination of arenes[J]. Chem Commun, 2022, 58(10):1613-1616.
[62] TODA F, TANAKA K, IWATA S. Oxidative coupling reactions of phenols with iron(III) chloride in the solid state[J]. J Org Chem, 1989, 54(13):3007-3009.
[63] FERINGA B, WYNBERG H. Asymmetric phenol oxidation. stereospecific and stereoselective oxidative coupling of a chiral tetrahydronaphthol[J]. J Org Chem, 1981, 46(12):2547-2557.
[64] SHAN Z X, WANG G P, DUAN B, et al. Preparation of enantiomerically pure 1,1'-bi-2-naphthol via cyclic borate ester[J]. Tetrahedron: Asymmetry, 1996, 7(10):2847-2850.
[65] WANG Y, SUN J, DING K L. Practical method and novel mechanism for optical resolution of binol by molecular complexation with n-benzylcinchoninium chloride[J]. Tetrahedron, 2000, 56(26):4447-4451.
[66] HON S-W, LI C-H, KUO J-H, et al. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium(iv) complexes[J]. Org Lett, 2001, 3(6):869-872.
[67] LI X, YANG J, KOZLOWSKI M C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes[J]. Org Lett, 2001, 3(8):1137-1140.
[68] LUO Z, LIU Q, GONG L, et al. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols[J]. Chem Commun, 2002, (8):914-915.
[69] BARHATE N B, CHEN C-T. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates[J]. Org Lett, 2002, 4(15):2529-2532.
[70] LUO Z B, LIU Q Z, GONG L Z, et al. Novel achiral biphenol-derived diastereomeric oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols[J]. Angew Chem Int Ed, 2002, 41(23):4532-4535.
[71] CHU C Y, UANG B J. Catalytic enantioselective coupling of 2-naphthols by new chiral oxovanadium complexes bearing a self accelerating functional group[J]. Tetrahedron: Asymmetry, 2003, 14(1):53-55.
[72] MALKOWSKY I M, ROMMEL C E, FRöHLICH R, et al. Novel template-directed anodic phenol-coupling reaction[J]. Chem Eur J, 2006, 12(28):7482-7488.
[73] MALKOWSKY I M, GRIESBACH U, PüTTER H, et al. Unexpected highly chemoselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes[J]. Eur J Org Chem, 2006, 2006(20):4569-4572.
[74] KIRSTE A, NIEGER M, MALKOWSKY I M, et al. Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols[J]. Chem Eur J, 2009, 15(10):2273-2277.
[75] ELSLER B, SCHOLLMEYER D, DYBALLA K M, et al. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols[J]. Angew Chem Int Ed, 2014, 53(20):5210-5213.
[76] RöCKL J L, SCHOLLMEYER D, FRANKE R, et al. Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups[J]. Angew Chem Int Ed, 2020, 59(1):315-319.
[77] GUO Q-X, WU Z-J, LUO Z-B, et al. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant[J]. J Am Chem Soc, 2007, 129(45):13927-13938.
[78] EGAMI H, KATSUKI T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2- naphthols[J]. J Am Chem Soc, 2009, 131(17):6082-6083.
[79] CHEN Y-H, CHENG D-J, ZHANG J, et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols[J]. J Am Chem Soc, 2015, 137(48):15062-15065.
[80] WANG J-Z, ZHOU J, XU C, et al. Symmetry in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to binol derivatives[J]. J Am Chem Soc, 2016, 138(16):5202-5205.
[81] MOLITERNO M, CARI R, PUGLISI A, et al. Quinine-catalyzed asymmetric synthesis of 2,2'- binaphthol-type biaryls under mild reaction conditions[J]. Angew Chem Int Ed, 2016, 55(22):6525-6529.
[82] NARUTE S, PARNES R, TOSTE F D, et al. Enantioselective oxidative homocoupling and crosscoupling of 2-naphthols catalyzed by chiral iron phosphate complexes[J]. J Am Chem Soc, 2016, 138(50):16553-16560.
[83] WANG Q-Q, JIANG Y-Y, ZENG C-C, et al. Electrocatalytic synthesis of non-symmetric biphenols mediated by tri(p-bromophenyl)amine: selective oxidative cross-coupling of different phenols and naphthols[J]. Chin J Chem, 2019, 37(4):352-358.
[84] TIAN J-M, WANG A-F, YANG J-S, et al. Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: enantioselective synthesis of 3,3'-substituted C1- symmetric binols[J]. Angew Chem Int Ed, 2019, 58(32):11023-11027.
[85] QIU H, SHUAI B, WANG Y-Z, et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers[J]. J Am Chem Soc, 2020, 142(22):9872-9878.
[86] NIEDERER K A, GILMARTIN P H, KOZLOWSKI M C. Oxidative photocatalytic homo- and cross-coupling of phenols: nonenzymatic, catalytic method for coupling tyrosine[J]. ACS Catal, 2020, 10(24):14615-14623.
[87] ZHANG J-W, JIANG F, CHEN Y-H, et al. Synthesis of structurally diversified binols and nobins via Palladium-catalyzed C-H arylation with diazoquinones[J]. Sci China Chem, 2021, 64(9):1515-1521.
[88] ZETZSCHE L E, YAZARIANS J A, CHAKRABARTY S, et al. Biocatalytic oxidative crosscoupling reactions for biaryl bond formation[J]. Nature, 2022, 603(7899):79-85.
[89] ZHANG H, WANG S C, WANG X Y, et al. K2S2O8-induced site-selectivephenoxazination/phenothiazination of electron-rich anilines[J]. Green Chem, 2022, 24(1):147-151.
[90] VEMURI P Y, CREMER C, PATUREAU F W. Te(II)-catalyzed cross-dehydrogenative phenothiazination of anilines[J]. Org Lett, 2022, 24(8):1626-1630.
[91] PODDAR M, CESARETTI A, FERRAGUZZI E, et al. Singlet and triplet excited-state dynamics of 3,7-bis(arylethynyl)phenothiazines: intramolecular charge transfer and reverse intersystem crossing[J]. J Phys Chem C, 2020, 124(33):17864-17878.
[92] SARTOR S M, CHRISMAN C H, PEARSON R M, et al. Designing high-triplet-yield phenothiazine donor–acceptor complexes for photoredox catalysis[J]. J Phys Chem A, 2020, 124(5):817-823.
[93] JIA H, HE M, YANG S, et al. Visible-light-driven di-t-butyl peroxide-promoted the oxidative homo- and cross-coupling of phenols[J]. Eur J Org Chem, 2022, 10.1002/ejoc.202101469.
[94] CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angew Chem Int Ed, 2017, 56(51):16308-16312.
[95] CHEN M-C, LEE Y-L, HUANG Z-X, et al. Tuning electron-withdrawing strength on phenothiazine derivatives: achieving 100 % photoluminescence quantum yield by NO2 substitution[J]. Chem Eur J, 2020, 26(31):7124-7130.
[96] CHEN Y-H, LI H-H, ZHANG X, et al. Organocatalytic enantioselective synthesis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols[J]. Angew Chem Int Ed, 2020, 59(28):11374-11378.

所在学位评定分委会
化学系
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336341
专题理学院_化学系
推荐引用方式
GB/T 7714
陈松. 电化学催化的吩噻嗪与萘酚的芳基化反应[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930508-陈松-化学系.pdf(16478KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈松]的文章
百度学术
百度学术中相似的文章
[陈松]的文章
必应学术
必应学术中相似的文章
[陈松]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。