中文版 | English
题名

基于纳米压痕及有限元仿真的薄膜材料断裂韧性表征研究

其他题名
FRACTURE TOUGHNESS CHARACTERIZATION OF THIN FILMS BASED ON NANOINDENTATION AND FINITE ELEMENT ANALYSIS
姓名
姓名拼音
LUO Weiquan
学号
12032682
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
KE WANG
导师单位
系统设计与智能制造学院
论文答辩日期
2022-05-10
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

半导体器件的制造离不开薄膜材料的应用,薄膜的沉积刻蚀是微型电子电路制作的基础,因此确定薄膜的材料特性,避免薄膜分层或断裂的情况出现,对预防器件的失效有着重要的意义。

由于材料尺寸的限制,传统的测试方法难以满足微纳米级别下薄膜性能测试的需要。纳米压痕技术可以有效地表征微观尺度下材料的力学性能,而有限元仿真可以对测试过程进行模拟分析,并弥补纳米压痕对塑性性能表征的局限。因此,纳米压痕技术和有限元仿真相结合,有助于微纳米薄膜的断裂韧性测试的进一步完善。

本文以硅晶圆表面的钝化层薄膜为研究对象,主要包含以下内容:

通过纳米压痕技术和连续刚度法得到了薄膜材料的硬度弹性模量,并采用立方角压头,对不同厚度、材料以及工艺条件下制备出来的钝化层薄膜的断裂韧性进行表征。结果表明QB工艺制备出来薄膜的断裂韧性要比QA工艺制备的高16%,并且薄膜使用的材料是决定膜层断裂韧性好坏最为重要的因素,氮化硅要比氮氧化硅更适合作为晶圆钝化层的制备材料。增加表面膜层的厚度对薄膜断裂韧性的提高影响不大。

借助ABAQUS建立了纳米压痕实验的仿真模型,基于量纲分析理论对#5样品氮化硅钝化层薄膜的力学性能作了进一步的研究,确定了薄膜的双线性弹塑性本构关系。利用内聚力模型建立了氮化硅薄膜的断裂有限元模型。仿真得到的裂纹长度和实际测量的结果基本一致。

综上所述,本文为利用纳米压痕实验和有限元模型表征薄膜材料的断裂韧性提供了方法和理论上的参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] YAN D, FU X, SHANG Z, et al. A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation[J]. Chemical Engineering Journal, 2019, 361: 853-861.
[2] KIM S, CHOI J. Photoelectrochemical anodization for the preparation of a thick tungsten oxide film[J]. Electrochemistry Communications, 2012, 17: 10-13.
[3] LIVAGE J, SANCHEZ C, HENRY M, et al. The chemistry of the sol-gel process[J]. Solid State Ionics, 1989, 32: 633-638.
[4] WANG X P, YU Y, HU X F, et al. Hydrophilicity of TiO2 films prepared by liquid phase deposition[J]. Thin Solid Films, 2000, 371(1-2): 148-152.
[5] JILANI A, ABDEL-WAHAB M S, HAMMAD A H. Advance deposition techniques for thin film and coating[J]. Modern Technologies for Creating the Thin-film Systems and Coatings, 2017, 2(3): 137-149.
[6] MOROSANU C E. The preparation, characterization and applications of silicon nitride thin films[J]. Thin Solid Films, 1980, 65(2): 171-208.
[7] SHWETHARANI R, CHANDAN H R, SAKAR M, et al. Photocatalytic semiconductor thin films for hydrogen production and environmental applications[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18289-18308.
[8] PRASANTH D, SIBIN K P, BARSHILIA H C. Optical properties of sputter deposited nanocrystalline CuO thin films[J]. Thin Solid Films, 2019, 673: 78-85.
[9] HANNACHI A, SEGURA A, MAGHRAOUI-MEHERZI H. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties[J]. Materials Chemistry and Physics, 2016, 181: 326-332.
[10] MERKEL J J, SONTHEIMER T, RECH B, et al. Directional growth and crystallization of silicon thin films prepared by electron-beam evaporation on oblique and textured surfaces[J]. Journal of Crystal Growth, 2013, 367: 126-130.
[11] MENG L, WANG Z, YANG L, et al. A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route[J]. Applied Surface Science, 2019, 474: 211-217.
[12] KUANR B K, MAAT S, CHANDRASHEKARIAIH S, et al. Determination of exchange and rotational anisotropies in Ir Mn∕ Fe (t)∕ Ir Mn exchange coupled structures using dynamic and static techniques: Application to microwave devices[J]. Journal of Applied Physics, 2008, 103(7): 07C107.
[13] RAO M C, SHEKHAWAT M S. A brief survey on basic properties of thin films for device application[C]//International Journal of Modern Physics: Conference Series. World Scientific Publishing Company, 2013, 22: 576-582.
[14] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1920, A221(4):163-198.
[15] IRWIN G R. Structural aspects of brittle fracture[J]. Applied Materials Research, 1964, 3(2): 65-81.
[16] INGLIS C E. Stresses in a plate due to the presence of cracks and sharp corners[J]. Trans Inst Naval Archit, 1913, 55: 219-241.
[17] SODERHOLM K J. Review of the fracture toughness approach[J]. Dental Materials, 2010, 26(2): e63-e77.
[18] CHEN L, IFJU P G, SANKAR B V, et al. Modified DCB test for high density stitched composite[C]//SEM Annual Conference on Theoretical, Experimental and Computational Mechanics. 1999: 214-217.
[19] HUANG Y, GUAN Y, WANG L, et al. Characterization of mortar fracture based on three point bending test and XFEM[J]. International Journal of Pavement Research and Technology, 2018, 11(4): 339-344.
[20] AST J, GHIDELLI M, DURST K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale[J]. Materials & Design, 2019, 173: 107762.
[21] VOEVODIN A A, ZABINSKI J S. Supertough wear-resistant coatings with ‘chameleon’surface adaptation[J]. Thin Solid Films, 2000, 370(1-2): 223-231.
[22] PEI Y T, GALVAN D, DE HOSSON J T M. Nanostructure and properties of TiC/aC: H composite coatings[J]. Acta Materialia, 2005, 53(17): 4505-4521.
[23] VOEVODIN A A, ZABINSKI J S. Load-adaptive crystalline–amorphous nanocomposites[J]. Journal of Materials Science, 1998, 33(2): 319-327.
[24] SHUM P W, LI K Y, ZHOU Z F, et al. Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 2004, 185(2-3): 245-253.
[25] BULL S J. Failure mode maps in the thin film scratch adhesion test[J]. Tribology International, 1997, 30(7): 491-498.
[26] LIGOT J, BENAYOUN S, HANTZPERGUE J J. Analysis of cracking induced by scratching of tungsten coatings on polyimide substrate[J]. Wear, 2000, 243(1-2): 85-91.
[27] HARRY E, ROUZAUD A, JULIET P, et al. Failure and adhesion characterization of tungsten–carbon single layers, multilayered and graded coatings[J]. Surface and Coatings Technology, 1999, 116: 172-175.
[28] VOEVODIN A A, REBHOLZ C, SCHNEIDER J M, et al. Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 1995, 73(3): 185-197.
[29] ZHANG S, SUN D, FU Y, et al. Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films[J]. Thin Solid Films, 2004, 447: 462-467.
[30] LEUNG D K, ZHANG N T, MCMEEKING R M, et al. Crack progression and interface debonding in brittle/ductile nanoscale multilayers[J]. Journal of materials Research, 1995, 10(8): 1958-1968.
[31] LEUNG D K, HE M Y, EVANS A G. The cracking resistance of nanoscale layers and films[J]. Journal of Materials Research, 1995, 10(7): 1693-1699.
[32] ESPINOSA H D, PENG B, MOLDOVAN N, et al. Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon[J]. Applied Physics letters, 2006, 89(7): 073111.
[33] ZHANG X, ZHANG S. A Microbridge method in tensile testing of substrate for fracture toughness of thin films[J]. Nanoscience and Nanotechnology Letters, 2011, 3(6): 735-743.
[34] ESPINOSA H D, PROROK B C, FISCHER M. A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(1): 47-67.
[35] PENG B, PUGNO N, ESPINOSA H D. An analysis of the membrane deflection experiment used in the investigation of mechanical properties of freestanding submicron thin films[J]. International Journal of Solids and Structures, 2006, 43(11-12): 3292-3305.
[36] 刘兴光, 张凯锋, 周晖. 基于 FIB/SEM 双束系统的原位, 实时观测三点弯曲薄膜测试方法[J]. 表面技术, 2021, 49(11): 351-357.
[37] BARTOSIK M, HAHN R, ZHANG Z L, et al. Fracture toughness of Ti-Si-N thin films[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 78-82.
[38] XIANG Y, MCKINNELL J, ANG W M, et al. Measuring the fracture toughness of ultra-thin films with application to AlTa coatings[J]. International Journal of fracture, 2007, 144(3): 173-179.
[39] XIANG Y, CHEN X, VLASSAK J J. Plane-strain bulge test for thin films[J]. Journal of Materials Research, 2005, 20(9): 2360-2370.
[40] MERLE B, GÖKEN M. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests[J]. Acta Materialia, 2011, 59(4): 1772-1779.
[41] SEBASTIANI M, JOHANNS K E, HERBERT E G, et al. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings[J]. Philosophical Magazine, 2015, 95(16-18): 1928-1944.
[42] SEBASTIANI M, JOHANNS K E, HERBERT E G, et al. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19(6): 324-333.
[43] LUCCA D A, HERRMANN K, KLOPFSTEIN M J. Nanoindentation: Measuring methods and applications[J]. CIRP Annals, 2010, 59(2): 803-819.
[44] TORGAL F P. Nanotechnology in eco-efficient construction: Materials, Processes and Applications[M]. Elsevier, 2013.
[45] AST J, GHIDELLI M, DURST K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale[J]. Materials & Design, 2019, 173: 107762.
[46] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9‐10): 574-581.
[47] VANDERMEULEN W, BOSCH R W, SNIJKERS F. The effect of Vickers hardness indentations on the fracture mode in 8 mol% yttria-stabilised zirconia[J]. Journal of Materials Science, 2015, 50(7): 2932-2943.
[48] SONG K, XU Y, ZHAO N, et al. Evaluation of fracture toughness of tantalum carbide ceramic layer: a Vickers indentation method[J]. Journal of Materials Engineering and Performance, 2016, 25(7): 3057-3064.
[49] GONG J, WANG J, GUAN Z. Indentation toughness of ceramics: A modified approach[J]. Journal of Materials Science, 2002, 37(4): 865-869.
[50] FAISAL N H, AHMED R, PRATHURU A K, et al. An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings[J]. Engineering Fracture Mechanics, 2014, 128: 189-204.
[51] ABBAS S Z, KHALID F A, ZAIGHAM H. Indentation fracture toughness behavior of FeCo-based bulk metallic glass intrinsic composites[J]. Journal of Non-Crystalline Solids, 2017, 457: 86-92.
[52] 毛卫国, 杨鹏, 戴翠英, 等. 脆性涂层材料断裂韧性和残余应力压痕表征技术综述[J]. 材料导报, 2018, 31(13): 1-11.
[53] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538.
[54] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59(7‐8): 371-372.
[55] SHEITY D K, ROSENFIELD A R, DUCKWORTH W H. Indenter Flaw Geometry and Fracture Toughness Estimates for a Glass‐Ceramic[J]. Journal of the American Ceramic Society, 1985, 68(10): C‐282-C‐284.
[56] LAUGIER M T. New formula for indentation toughness in ceramics[J]. Journal of Materials Science Letters, 1987, 6(3): 355-356.
[57] LANKFORD J. Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method[J]. Journal of Materials Science Letters, 1982, 1(11): 493-495.
[58] BLENDELL J E. The origins of internal stresses in polycrystalline AL2O3 and their effects on mechanical properties[J]. Massachusetts Institute of Technology, 1979, 123(1):617–626.
[59] LAWN B R, FULLER E R. Equilibrium penny-like cracks in indentation fracture[J]. Journal of Materials Science, 1975, 10(12): 2016-2024.
[60] 何远武. 热障涂层体系压痕断裂力学模型及高温压痕测试分析[D]. 湘潭大学.
[61] KIM S S, CHAE Y H, CHOI S Y. Characteristics evaluation of plasma sprayed ceramic coatings by nano/micro-indentation test[J]. Tribology Letters, 2004, 17(3): 663-668.
[62] CHICOT D, MAROT G, ARAUJO P, et al. Effect of some thermal treatments on interface adhesion toughness of various thick thermal spray coatings[J]. Surface Engineering, 2006, 22(5): 390-398.
[63] MAO W G, WAN J, DAI C Y, et al. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique[J]. Surface and Coatings Technology, 2012, 206(21): 4455-4461.
[64] 邵甜甜. 纳米压痕结合有限元模拟研究微纳米 TaC 陶瓷的力学性能[D]. 西安理工大学, 2016.
[65] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[66] DOERNER M F, NIX W D. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials Research, 1986, 1(4): 601-609.
[67] PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation[J]. Journal of Materials Research, 1992, 7(3): 613-617.
[68] LI X, BHUSHAN B. Development of continuous stiffness measurement technique for composite magnetic tapes[J]. Scripta Materialia, 2000, 42(10).
[69] TUNVISUT K, O'DOWD N P, BUSSO E P. Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests[J]. International Journal of Solids and Structures, 2001, 38(2): 335-351.
[70] LI X, BHUSHAN B. A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002, 48(1): 11-36.
[71] HOCHSTETTER G, JIMENEZ A, LOUBET J L. Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements[J]. Journal of Macromolecular Science—Physics, 1999, 38(5-6): 681-692.
[72] LORENZ L, CHUDOBA T, MAKOWSKI S, et al. Indentation modulus extrapolation and thickness estimation of ta-C coatings from nanoindentation[J]. Journal of Materials Science, 2021, 56(33): 18740-18748.
[73] BARENBLATT G I, BARENBLATT G I, ISAAKOVICH B G. Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics[M]. Cambridge University Press, 1996.
[74] EVANS J H. Dimensional analysis and the Buckingham Pi theorem[J]. American Journal of Physics, 1972, 40(12): 1815-1822.
[75] DAO M, CHOLLACOOP N, VAN VLIET K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001, 49(19): 3899-3918.
[76] OGASAWARA N, CHIBA N, CHEN X. Measuring the plastic properties of bulk materials by single indentation test[J]. Scripta Materialia, 2006, 54(1): 65-70.
[77] CHENG Y T, CHENG C M. Scaling, dimensional analysis, and indentation measurements[J]. Materials Science and Engineering: R: Reports, 2004, 44(4-5): 91-149.
[78] CHENG Y T, CHENG C M. Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters?[J]. Journal of Materials Research, 1999, 14(9): 3493-3496.
[79] CHEN S, LIU L, WANG T. Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations[J]. Surface and Coatings Technology, 2005, 191(1): 25-32.
[80] CHENG Y T, CHENG C M. Scaling relationships in conical indentation of elastic-perfectly plastic solids[J]. International Journal of Solids and Structures, 1999, 36(8): 1231-1243.
[81] 张泰华. 微/纳米力学测试技术: 仪器化压入的测量, 分析, 应用及其标准化[M]. 科学出版社, 2013.
[82] CHIANG S S, MARSHALL D B, EVANS A G. The response of solids to elastic/plastic indentation. I. Stresses and residual stresses[J]. Journal of Applied Physics, 1982, 53(1): 298-311.
[83] HARDING D S, OLIVER W C, PHARR G M. Cracking during nanoindentation and its use in the measurement of fracture toughness[J]. MRS Online Proceedings Library (OPL), 1994, 356.
[84] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104.
[85] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[M]. Advances in Applied Mechanics, 1962, 7: 55-129.
[86] MIGAS P. Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions[J]. Archives of Metallurgy & Materials, 2015, 60(1):85-93.
[87] HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781.
[88] MARSH D M. Plastic flow in glass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 279(1378): 420-435.
[89] LEE J H, GAO Y F, JOHANNS K E, et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials[J]. Acta Materialia, 2012, 60(15): 5448-5467.

所在学位评定分委会
系统设计与智能制造学院
国内图书分类号
TB321
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336345
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
罗伟权. 基于纳米压痕及有限元仿真的薄膜材料断裂韧性表征研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032682-罗伟权-系统设计与智能(3619KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗伟权]的文章
百度学术
百度学术中相似的文章
[罗伟权]的文章
必应学术
必应学术中相似的文章
[罗伟权]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。