[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2] TANG W, CHEN Z, ZHANG W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects [J]. Signal Transduct Target Ther, 2020, 5(1): 87.
[3] WANG Y, WANG G, TAN X, et al. MT1G serves as a tumor suppressor in hepatocellular carcinoma by interacting with p53 [J]. Oncogenesis, 2019, 8(12): 67.
[4] HOUESSINON A, FRANCOIS C, SAUZAY C, et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib [J]. Mol Cancer, 2016, 15(1): 38.
[5] SUN X, NIU X, CHEN R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis [J]. Hepatology, 2016, 64(2): 488-500.
[6] LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma [J]. Nat Rev Dis Primers, 2021, 7(1): 6.
[7] ZHENG R, QU C, ZHANG S, et al. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030 [J]. Chin J Cancer Res, 2018, 30(6): 571-9.
[8] EL-SERAG H B, RUDOLPH K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis [J]. Gastroenterology, 2007, 132(7): 2557-76.
[9] EUROPEAN ASSOCIATION FOR THE STUDY OF THE L, EUROPEAN ORGANISATION FOR R, TREATMENT OF C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma [J]. J Hepatol, 2012, 56(4): 908-43.
[10] TRINCHET J C, BOURCIER V, CHAFFAUT C, et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort) [J]. Hepatology, 2015, 62(3): 737-50.
[11] FRACANZANI A L, CONTE D, FRAQUELLI M, et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease [J]. Hepatology, 2001, 33(3): 647-51.
[12] CHEN C J, YANG H I, SU J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level [J]. JAMA, 2006, 295(1): 65-73.
[13] MURAKAMI Y, SAIGO K, TAKASHIMA H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas [J]. Gut, 2005, 54(8): 1162-8.
[14] SHIH W L, KUO M L, CHUANG S E, et al. Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway [J]. J Biol Chem, 2000, 275(33): 25858-64.
[15] CHIANG C J, YANG Y W, YOU S L, et al. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan [J]. JAMA, 2013, 310(9): 974-6.
[16] POLARIS OBSERVATORY H C V C. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study [J]. Lancet Gastroenterol Hepatol, 2017, 2(3): 161-76.
[17] GAO X, ZHAN M, WANG L, et al. Timing of DAA Initiation After Curative Treatment and Its Relationship with the Recurrence of HCV-Related HCC [J]. J Hepatocell Carcinoma, 2020, 7(347-60.
[18] MUNAKA M, KOHSHI K, KAWAMOTO T, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma [J]. J Cancer Res Clin Oncol, 2003, 129(6): 355-60.
[19] MCCLAIN C J, HILL D B, SONG Z, et al. Monocyte activation in alcoholic liver disease [J]. Alcohol, 2002, 27(1): 53-61.
[20] LIN C W, LIN C C, MO L R, et al. Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cirrhosis [J]. J Hepatol, 2013, 58(4): 730-5.
[21] HUANG D Q, EL-SERAG H B, LOOMBA R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention [J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 223-38.
[22] ANSTEE Q M, REEVES H L, KOTSILITI E, et al. From NASH to HCC: current concepts and future challenges [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(7): 411-28.
[23] RICH N E, YOPP A C, SINGAL A G, et al. Hepatocellular Carcinoma Incidence Is Decreasing Among Younger Adults in the United States [J]. Clin Gastroenterol Hepatol, 2020, 18(1): 242-8 e5.
[24] LEE Y C, COHET C, YANG Y C, et al. Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer [J]. Int J Epidemiol, 2009, 38(6): 1497-511.
[25] THORGEIRSSON S S, GRISHAM J W. Molecular pathogenesis of human hepatocellular carcinoma [J]. Nat Genet, 2002, 31(4): 339-46.
[26] GARRIDO A, DJOUDER N. Cirrhosis: A Questioned Risk Factor for Hepatocellular Carcinoma [J]. Trends Cancer, 2021, 7(1): 29-36.
[27] WULFING C, VAN AHLEN H, ELTZE E, et al. Metallothionein in bladder cancer: correlation of overexpression with poor outcome after chemotherapy [J]. World J Urol, 2007, 25(2): 199-205.
[28] BRUIX J, BOIX L, SALA M, et al. Focus on hepatocellular carcinoma [J]. Cancer Cell, 2004, 5(3): 215-9.
[29] WU Y, ZHANG J, ZHANG X, et al. Cancer Stem Cells: A Potential Breakthrough in HCC-Targeted Therapy [J]. Front Pharmacol, 2020, 11(198.
[30] BATLLE E, CLEVERS H. Cancer stem cells revisited [J]. Nat Med, 2017, 23(10): 1124-34.
[31] WAN P T, GARNETT M J, ROE S M, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF [J]. Cell, 2004, 116(6): 855-67.
[32] CHEN L, LIU S, TAO Y. Regulating tumor suppressor genes: post-translational modifications [J]. Signal Transduct Target Ther, 2020, 5(1): 90.
[33] MENDOZA P R, GROSSNIKLAUS H E. The Biology of Retinoblastoma [J]. Prog Mol Biol Transl Sci, 2015, 134(503-16.
[34] CHATTERJEE N, WALKER G C. Mechanisms of DNA damage, repair, and mutagenesis [J]. Environ Mol Mutagen, 2017, 58(5): 235-63.
[35] SAVAGE K I, HARKIN D P. BRCA1, a 'complex' protein involved in the maintenance of genomic stability [J]. FEBS J, 2015, 282(4): 630-46.
[36] BOXER L M, DANG C V. Translocations involving c-myc and c-myc function [J]. Oncogene, 2001, 20(40): 5595-610.
[37] MITELMAN F, JOHANSSON B, MERTENS F. The impact of translocations and gene fusions on cancer causation [J]. Nat Rev Cancer, 2007, 7(4): 233-45.
[38] CHIANG D Y, VILLANUEVA A, HOSHIDA Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma [J]. Cancer Res, 2008, 68(16): 6779-88.
[39] SAWEY E T, CHANRION M, CAI C, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening [J]. Cancer Cell, 2011, 19(3): 347-58.
[40] ZUCMAN-ROSSI J, VILLANUEVA A, NAULT J C, et al. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma [J]. Gastroenterology, 2015, 149(5): 1226-39 e4.
[41] HE S, TANG S. WNT/beta-catenin signaling in the development of liver cancers [J]. Biomed Pharmacother, 2020, 132(110851.
[42] HAN T S, BAN H S, HUR K, et al. The Epigenetic Regulation of HCC Metastasis [J]. Int J Mol Sci, 2018, 19(12):
[43] XIA H, OOI L L, HUI K M. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer [J]. Hepatology, 2013, 58(2): 629-41.
[44] YU M, XUE H, WANG Y, et al. miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma [J]. Int J Oncol, 2017, 50(3): 975-83.
[45] SINGAL R, GINDER G D. DNA methylation [J]. Blood, 1999, 93(12): 4059-70.
[46] GONZALO S, BLASCO M A. Role of Rb family in the epigenetic definition of chromatin [J]. Cell Cycle, 2005, 4(6): 752-5.
[47] SAITO Y, KANAI Y, SAKAMOTO M, et al. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis [J]. Hepatology, 2001, 33(3): 561-8.
[48] DONG Y, WANG A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (Review) [J]. Oncol Lett, 2014, 8(3): 963-8.
[49] GAO X, SHENG Y, YANG J, et al. Osteopontin alters DNA methylation through up-regulating DNMT1 and sensitizes CD133+/CD44+ cancer stem cells to 5 azacytidine in hepatocellular carcinoma [J]. J Exp Clin Cancer Res, 2018, 37(1): 179.
[50] HAMATSU T, RIKIMARU T, YAMASHITA Y, et al. The role of MTA1 gene expression in human hepatocellular carcinoma [J]. Oncol Rep, 2003, 10(3): 599-604.
[51] LEE M H, NA H, KIM E J, et al. Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1 [J]. Oncogene, 2012, 31(49): 5099-107.
[52] LEE M H, NA H, NA T Y, et al. Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis [J]. Oncogenesis, 2012, 1(e25.
[53] FULLGRABE J, KAVANAGH E, JOSEPH B. Histone onco-modifications [J]. Oncogene, 2011, 30(31): 3391-403.
[54] LU H, LI G, ZHOU C, et al. Regulation and role of post-translational modifications of enhancer of zeste homologue 2 in cancer development [J]. Am J Cancer Res, 2016, 6(12): 2737-54.
[55] XIAO G, JIN L L, LIU C Q, et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma [J]. J Immunother Cancer, 2019, 7(1): 300.
[56] LUNDBERG L E, STENBERG P, LARSSON J. HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster [J]. Nucleic Acids Res, 2013, 41(8): 4481-94.
[57] SHAO Y, SONG X, JIANG W, et al. MicroRNA-621 Acts as a Tumor Radiosensitizer by Directly Targeting SETDB1 in Hepatocellular Carcinoma [J]. Mol Ther, 2019, 27(2): 355-64.
[58] WU H, YANG T Y, LI Y, et al. Tumor Necrosis Factor Receptor-Associated Factor 6 Promotes Hepatocarcinogenesis by Interacting With Histone Deacetylase 3 to Enhance c-Myc Gene Expression and Protein Stability [J]. Hepatology, 2020, 71(1): 148-63.
[59] QU N, BO X, LI B, et al. Role of N6-Methyladenosine (m(6)A) Methylation Regulators in Hepatocellular Carcinoma [J]. Front Oncol, 2021, 11(755206.
[60] CHEN M, WEI L, LAW C T, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 [J]. Hepatology, 2018, 67(6): 2254-70.
[61] QIAO K, LIU Y, XU Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway [J]. Angiogenesis, 2021, 24(1): 83-96.
[62] ZHONG L, LIAO D, ZHANG M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma [J]. Cancer Lett, 2019, 442(252-61.
[63] SUHAIL Y, CAIN M P, VANAJA K, et al. Systems Biology of Cancer Metastasis [J]. Cell Syst, 2019, 9(2): 109-27.
[64] FIDLER I J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited [J]. Nat Rev Cancer, 2003, 3(6): 453-8.
[65] HARPER K L, SOSA M S, ENTENBERG D, et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer [J]. Nature, 2016, 540(7634): 588-92.
[66] LEHMANN S, TE BOEKHORST V, ODENTHAL J, et al. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells [J]. Curr Biol, 2017, 27(3): 392-400.
[67] COLEGIO O R, CHU N Q, SZABO A L, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid [J]. Nature, 2014, 513(7519): 559-63.
[68] MAJIDPOOR J, MORTEZAEE K. Steps in metastasis: an updated review [J]. Med Oncol, 2021, 38(1): 3.
[69] LO H C, XU Z, KIM I S, et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis [J]. Nat Cancer, 2020, 1(7): 709-22.
[70] DE BOCK K, MAZZONE M, CARMELIET P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? [J]. Nat Rev Clin Oncol, 2011, 8(7): 393-404.
[71] WU X, ZHANG X, YU L, et al. Zinc finger protein 367 promotes metastasis by inhibiting the Hippo pathway in breast cancer [J]. Oncogene, 2020, 39(12): 2568-82.
[72] MASSAGUE J, GANESH K. Metastasis-Initiating Cells and Ecosystems [J]. Cancer Discov, 2021, 11(4): 971-94.
[73] DIEPENBRUCK M, CHRISTOFORI G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? [J]. Curr Opin Cell Biol, 2016, 43(7-13.
[74] TUNG-PING POON R, FAN S T, WONG J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma [J]. Ann Surg, 2000, 232(1): 10-24.
[75] ZHU Y J, ZHENG B, WANG H Y, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer [J]. Acta Pharmacol Sin, 2017, 38(5): 614-22.
[76] HAMPTON T. Cancer drug trials show modest benefit: drugs target liver, gastric, head and neck cancers [J]. JAMA, 2007, 298(3): 273-5.
[77] ABOU-ALFA G K, JOHNSON P, KNOX J J, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial [J]. JAMA, 2010, 304(19): 2154-60.
[78] AWADA A, GIL T, WHENHAM N, et al. Safety and pharmacokinetics of sorafenib combined with capecitabine in patients with advanced solid tumors: results of a phase 1 trial [J]. J Clin Pharmacol, 2011, 51(12): 1674-84.
[79] ZHU K, HUANG J, LAI L, et al. Medium or Large Hepatocellular Carcinoma: Sorafenib Combined with Transarterial Chemoembolization and Radiofrequency Ablation [J]. Radiology, 2018, 288(1): 300-7.
[80] BLIVET-VAN EGGELPOEL M J, CHETTOUH H, FARTOUX L, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells [J]. J Hepatol, 2012, 57(1): 108-15.
[81] GEDALY R, ANGULO P, HUNDLEY J, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways [J]. Anticancer Res, 2010, 30(12): 4951-8.
[82] ZHAI B, HU F, JIANG X, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma [J]. Mol Cancer Ther, 2014, 13(6): 1589-98.
[83] SINGH S S, VATS S, CHIA A Y, et al. Dual role of autophagy in hallmarks of cancer [J]. Oncogene, 2018, 37(9): 1142-58.
[84] SHIMIZU S, TAKEHARA T, HIKITA H, et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma [J]. Int J Cancer, 2012, 131(3): 548-57.
[85] TREDAN O, GALMARINI C M, PATEL K, et al. Drug resistance and the solid tumor microenvironment [J]. J Natl Cancer Inst, 2007, 99(19): 1441-54.
[86] LIANG Y, ZHENG T, SONG R, et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1alpha inhibition in hepatocellular carcinoma [J]. Hepatology, 2013, 57(5): 1847-57.
[87] PARK C Y, TSENG D, WEISSMAN I L. Cancer stem cell-directed therapies: recent data from the laboratory and clinic [J]. Mol Ther, 2009, 17(2): 219-30.
[88] FERNANDO J, MALFETTONE A, CEPEDA E B, et al. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells [J]. Int J Cancer, 2015, 136(4): E161-72.
[89] MCKEOWN S R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response [J]. Br J Radiol, 2014, 87(1035): 20130676.
[90] RIEDL C C, BRADER P, ZANZONICO P B, et al. Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET [J]. Radiology, 2008, 248(2): 561-70.
[91] WADA H, NAGANO H, YAMAMOTO H, et al. Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha [J]. Liver Int, 2006, 26(4): 414-23.
[92] HELMLINGER G, YUAN F, DELLIAN M, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation [J]. Nat Med, 1997, 3(2): 177-82.
[93] SUN X, JIANG H, JIANG X, et al. Antisense hypoxia-inducible factor-1alpha augments transcatheter arterial embolization in the treatment of hepatocellular carcinomas in rats [J]. Hum Gene Ther, 2009, 20(4): 314-24.
[94] BAO M H, WONG C C. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer [J]. Cells, 2021, 10(7):
[95] SEMENZA G L. Hypoxia-inducible factors in physiology and medicine [J]. Cell, 2012, 148(3): 399-408.
[96] CORIAT R, NICCO C, CHEREAU C, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo [J]. Mol Cancer Ther, 2012, 11(10): 2284-93.
[97] YOU L, WU W, WANG X, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion [J]. Med Res Rev, 2021, 41(3): 1622-43.
[98] PASTOREKOVA S, PARKKILA S, PARKKILA A K, et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts [J]. Gastroenterology, 1997, 112(2): 398-408.
[99] PASTOREK J, PASTOREKOVA S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use [J]. Semin Cancer Biol, 2015, 31(52-64.
[100] COYLE P, PHILCOX J C, CAREY L C, et al. Metallothionein: the multipurpose protein [J]. Cell Mol Life Sci, 2002, 59(4): 627-47.
[101] FERRARIO C, LAVAGNI P, GARIBOLDI M, et al. Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma [J]. Lab Invest, 2008, 88(5): 474-81.
[102] KUMARI M V, HIRAMATSU M, EBADI M. Free radical scavenging actions of metallothionein isoforms I and II [J]. Free Radic Res, 1998, 29(2): 93-101.
[103] ZHENG Y, JIANG L, HU Y, et al. Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/beta-catenin signaling pathway [J]. BMC Cancer, 2017, 17(1): 161.
[104] DEMIDENKO R, DANIUNAITE K, BAKAVICIUS A, et al. Decreased expression of MT1E is a potential biomarker of prostate cancer progression [J]. Oncotarget, 2017, 8(37): 61709-18.
[105] ARRIAGA J M, LEVY E M, BRAVO A I, et al. Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival [J]. Hum Pathol, 2012, 43(2): 197-208.
[106] RUTTKAY-NEDECKY B, NEJDL L, GUMULEC J, et al. The role of metallothionein in oxidative stress [J]. Int J Mol Sci, 2013, 14(3): 6044-66.
[107] KLAASSEN C D, LIU J, DIWAN B A. Metallothionein protection of cadmium toxicity [J]. Toxicol Appl Pharmacol, 2009, 238(3): 215-20.
[108] LIM D, JOCELYN K M, YIP G W, et al. Silencing the Metallothionein-2A gene inhibits cell cycle progression from G1- to S-phase involving ATM and cdc25A signaling in breast cancer cells [J]. Cancer Lett, 2009, 276(1): 109-17.
[109] WERYNSKA B, PULA B, MUSZCZYNSKA-BERNHARD B, et al. Correlation between expression of metallothionein and expression of Ki-67 and MCM-2 proliferation markers in non-small cell lung cancer [J]. Anticancer Res, 2011, 31(9): 2833-9.
[110] OSTRAKHOVITCH E A, OLSSON P E, JIANG S, et al. Interaction of metallothionein with tumor suppressor p53 protein [J]. FEBS Lett, 2006, 580(5): 1235-8.
[111] KIM H G, KIM J Y, HAN E H, et al. Metallothionein-2A overexpression increases the expression of matrix metalloproteinase-9 and invasion of breast cancer cells [J]. FEBS Lett, 2011, 585(2): 421-8.
[112] YAN D W, FAN J W, YU Z H, et al. Downregulation of metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue [J]. Biochim Biophys Acta, 2012, 1822(6): 918-26.
[113] KIM H G, HWANG Y P, JEONG H G. Metallothionein-III induces HIF-1alpha-mediated VEGF expression in brain endothelial cells [J]. Biochem Biophys Res Commun, 2008, 369(2): 666-71.
[114] SUBRAMANIAN VIGNESH K, DEEPE G S, JR. Metallothioneins: Emerging Modulators in Immunity and Infection [J]. Int J Mol Sci, 2017, 18(10):
[115] EMRI E, EGERVARI K, VARVOLGYI T, et al. Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma [J]. J Eur Acad Dermatol Venereol, 2013, 27(3): e320-7.
[116] WEST A K, STALLINGS R, HILDEBRAND C E, et al. Human metallothionein genes: structure of the functional locus at 16q13 [J]. Genomics, 1990, 8(3): 513-8.
[117] HIRAKO N, NAKANO H, TAKAHASHI S. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation [J]. PLoS One, 2014, 9(7): e103282.
[118] ARRIAGA J M, BRAVO A I, MORDOH J, et al. Metallothionein 1G promotes the differentiation of HT-29 human colorectal cancer cells [J]. Oncol Rep, 2017, 37(5): 2633-51.
[119] FU J, LV H, GUAN H, et al. Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway [J]. BMC Cancer, 2013, 13(462.
[120] JI X F, FAN Y C, GAO S, et al. MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma [J]. World J Gastroenterol, 2014, 20(16): 4723-9.
[121] ARRIAGA J M, GRECO A, MORDOH J, et al. Metallothionein 1G and zinc sensitize human colorectal cancer cells to chemotherapy [J]. Mol Cancer Ther, 2014, 13(5): 1369-81.
[122] FARRUGIA M K, VANDERBILT D B, SALKENI M A, et al. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses [J]. Cancer Res, 2016, 76(7): 1677-82.
[123] TETREAULT M P, YANG Y, KATZ J P. Kruppel-like factors in cancer [J]. Nat Rev Cancer, 2013, 13(10): 701-13.
[124] YANG H, PARK D, RYU J, et al. USP11 degrades KLF4 via its deubiquitinase activity in liver diseases [J]. J Cell Mol Med, 2021, 25(14): 6976-87.
[125] LU X J, SHI Y, CHEN J L, et al. Kruppel-like factors in hepatocellular carcinoma [J]. Tumour Biol, 2015, 36(2): 533-41.
[126] SUN H, TANG H, XIE D, et al. Kruppel-like Factor 4 Blocks Hepatocellular Carcinoma Dedifferentiation and Progression through Activation of Hepatocyte Nuclear Factor-6 [J]. Clin Cancer Res, 2016, 22(2): 502-12.
[127] SUN H, PENG Z, TANG H, et al. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-beta signaling in and promote progression of hepatocellular carcinoma [J]. Oncogene, 2017, 36(21): 2957-68.
[128] WEI D, KANAI M, HUANG S, et al. Emerging role of KLF4 in human gastrointestinal cancer [J]. Carcinogenesis, 2006, 27(1): 23-31.
[129] OPAVSKY R, PASTOREKOVA S, ZELNIK V, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships [J]. Genomics, 1996, 33(3): 480-7.
[130] NAKAGAWA Y, UEMURA H, HIRAO Y, et al. Radiation hybrid mapping of the human MN/CA9 locus to chromosome band 9p12-p13 [J]. Genomics, 1998, 53(1): 118-9.
[131] MAHON B P, PINARD M A, MCKENNA R. Targeting carbonic anhydrase IX activity and expression [J]. Molecules, 2015, 20(2): 2323-48.
[132] SUPURAN C T, WINUM J Y. Carbonic anhydrase IX inhibitors in cancer therapy: an update [J]. Future Med Chem, 2015, 7(11): 1407-14.
[133] THIRY A, DOGNE J M, MASEREEL B, et al. Targeting tumor-associated carbonic anhydrase IX in cancer therapy [J]. Trends Pharmacol Sci, 2006, 27(11): 566-73.
[134] PASTOREK J, PASTOREKOVA S, CALLEBAUT I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment [J]. Oncogene, 1994, 9(10): 2877-88.
[135] LYKO F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation [J]. Nat Rev Genet, 2018, 19(2): 81-92.
[136] YANG J, LIU L, LI M, et al. Naringenin inhibits proinflammatory cytokine production in macrophages through inducing MT1G to suppress the activation of NFkappaB [J]. Mol Immunol, 2021, 137(155-62.
[137] LI K, ZHANG Z, MEI Y, et al. Metallothionein-1G suppresses pancreatic cancer cell stemness by limiting activin A secretion via NF-kappaB inhibition [J]. Theranostics, 2021, 11(7): 3196-212.
[138] ZHU X, DU J, YU J, et al. LncRNA NKILA regulates endothelium inflammation by controlling a NF-kappaB/KLF4 positive feedback loop [J]. J Mol Cell Cardiol, 2019, 126(60-9.
[139] AKAOGI K, NAKAJIMA Y, ITO I, et al. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha [J]. Oncogene, 2009, 28(32): 2894-902.
[140] YASUDA M, HATANAKA T, SHIRATO H, et al. Cell type-specific reciprocal regulation of HIF1A gene expression is dependent on 5'- and 3'-UTRs [J]. Biochem Biophys Res Commun, 2014, 447(4): 638-43.
[141] YANG N, WANG T, LI Q, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1alpha [J]. J Cell Physiol, 2021, 236(5): 3863-80.
修改评论