[1] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts [J]. Nature Energy, 2019, 4(6): 430-3.
[2] ZHANG J, YU L, CHEN Y, et al. Designed Formation of Double-Shelled Ni-Fe Layered-Double-Hydroxide Nanocages for Efficient Oxygen Evolution Reaction [J]. Adv Mater, 2020, 32(16): e1906432.
[3] DAU H, LIMBERG C, REIER T, et al. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J]. ChemCatChem, 2010, 2(7): 724-61.
[4] HONG W T, RISCH M, STOERZINGER K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis [J]. Energy & Environmental Science, 2015, 8(5): 1404-27.
[5] LU Y-C, GALLANT B M, KWABI D G, et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance [J]. Energy & Environmental Science, 2013, 6(3).
[6] PINAUD B A, BENCK J D, SEITZ L C, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry [J]. Energy & Environmental Science, 2013, 6(7).
[7] HAMEL J A, SUNG K, JARVI T D, et al. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts [J]. Science, 2011.
[8] MCKONE J R, LEWIS N S, GRAY H B. Will Solar-Driven Water-Splitting Devices See the Light of Day? [J]. Chemistry of Materials, 2013, 26(1): 407-14.
[9] HUANG L, ZAMAN S, TIAN X, et al. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells [J]. Acc Chem Res, 2021, 54(2): 311-22.
[10] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction [J]. J Am Chem Soc, 2013, 135(45): 16977-87.
[11] CAO R, LEE J-S, LIU M, et al. Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J]. Advanced Energy Materials, 2012, 2(7): 816-29.
[12] LI X, WALSH F C, PLETCHER D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers [J]. Phys Chem Chem Phys, 2011, 13(3): 1162-7.
[13] BURKE M S, ENMAN L J, BATCHELLOR A S, et al. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J]. Chemistry of Materials, 2015, 27(22): 7549-58.
[14] ZUO S, WU Z P, ZHANG H, et al. Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis [J]. Advanced Energy Materials, 2022.
[15] MEFFORD J T, ZHAO Z, BAJDICH M, et al. Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches [J]. Energy & Environmental Science, 2020, 13(2): 622-34.
[16] KUAI C, XU Z, XI C, et al. Phase segregation reversibility in mixed-metal 参考文献60hydroxide water oxidation catalysts [J]. Nature Catalysis, 2020, 3(9): 743-53.
[17] 徐国宝, 董绍俊. 电化学发光及其应用 [J]. 分析化学, 2001, 29(1): 6.
[18] YANG M, CHEN R, YI C. Electro Chemo Luminescence (ECL) [M]//LI D. Encyclopedia of Microfluidics and Nanofluidics. Boston, MA; Springer US. 2013: 1-11.
[19] SAQIB M, FAN Y, HAO R, et al. Optical imaging of nanoscale electrochemical interfaces in energy applications [J]. Nano Energy, 2021, 90.
[20] HARVEY N. Luminescence during Electrolysis [J]. 1929.
[21] HUA C. Electrochemiluminescence of luminol in dimethyl sulfoxide at a polycrystalline gold electrode [J]. Electrochimica Acta, 2006.
[22] CHEN M M, ZHAO W, ZHU M J, et al. Spatiotemporal imaging of electrocatalytic activity on single 2D gold nanoplates via electrogenerated chemiluminescence microscopy [J]. Chem Sci, 2019, 10(15): 4141-7.
[23] TOKEL N E, BARD A J. Electrogenerated Chemiluminescence. Electrochemistry and Emission from Systems Containing Tris(2,2 ′ -bipyridine)ruthenium (II) Dichloride [J]. Journal of the American Chemical Society, 1972, 94(8): 2862-3.
[24] CHANG M M, SAJI T, BARD A J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions [J]. Journal of the American Chemical Society, 1977, 99(16).
[25] WHITE H S, BARD A J. Electrogenerated Chemiluminescence. 41. Electrogenerated Chemiluminescence and Chemiluminescence of the Ru(2,2'-bpy)3(2+)-S2O8(2-) System in Acetonitrile-Water Solutions [J]. Journal of the American Chemical Society, 1982, 104(25): 6891-5.
[26] NOFFSINGER J B, DANIELSON N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Analytical Chemistry, 1987, 59(6).
[27] ZU Y, BARD A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity [J]. Analytical Chemistry, 2000, 72(14): 3223-32.
[28] ZU Y, BARD A J. Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2')bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity [J]. Analytical Chemistry, 2001, 73(16): 3960-4.
[29] MIAO W, CHOI J P, BARD A J. Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA+ Cation Radicals [J]. Journal of the American Chemical Society, 2003, 124(48): 14478-85.
[30] CHEN Y, FU J, CUI C, et al. In Situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation [J]. Anal Chem, 2018, 90(14): 8635-41.
[31] ZHU M J, PAN J B, WU Z Q, et al. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle [J]. Angew Chem Int Ed Engl, 2018, 57(15): 4010-4.
[32] CHEN M M, XU C H, ZHAO W, et al. Observing the structure-dependent electrocatalytic activity of bimetallic Pd-Au nanorods at the single-particle level [J]. Chem Commun (Camb), 2020, 56(23): 3413-6.
[33] CHEN M M, XU C H, ZHAO W, et al. Single Cell Imaging of Electrochemiluminescence-driven Photodynamic Therapy [J]. Angew Chem Int Ed Engl, 2022.
[34] FAN Z, YAO B, DING Y, et al. Entropy-driven amplified 参考文献61electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds [J]. Biosens Bioelectron, 2021, 178: 113015.
[35] LIU P F, ZHAO K R, LIU Z J, et al. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection [J]. Biosens Bioelectron, 2021, 176: 112954.
[36] ANDERSON T J, DEFNET P A, ZHANG B. Electrochemiluminescence (ECL)-Based Electrochemical Imaging Using a Massive Array of Bipolar Ultramicroelectrodes [J]. Anal Chem, 2020, 92(9): 6748-55.
[37] FOSDICK S E, KNUST K N, SCIDA K, et al. Bipolar electrochemistry [J]. Angew Chem Int Ed Engl, 2013, 52(40): 10438-56.
[38] ISMAIL A, VOCI S, PHAM P, et al. Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging [J]. Anal Chem, 2019, 91(14): 8900-7.
[39] MA C, WU W, LI L, et al. Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters [J]. Chem Sci, 2018, 9(29): 6167-75.
[40] MA C, WEI H F, WANG M X, et al. Hydrogen Evolution Reaction Monitored by Electrochemiluminescence Blinking at Single-Nanoparticle Level [J]. Nano Lett, 2020, 20(7): 5008-16.
[41] A T, KLAR, W S, et al. Subdiffraction resolution in far-field fluorescence microscopy [J]. Optics letters, 1999.
[42] HELL S W. Strategy for far-field optical imaging and writing without diffraction limit [J]. Physics Letters A, 2004, 326(1): 140-5.
[43]MATS G L G, WEBB W W. Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-6.
[44] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution [J]. Science, 2006, 313(5793): 1642-5.
[45] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-6.
[46] DONG J, LU Y, XU Y, et al. Direct imaging of single-molecule electrochemical reactions in solution [J]. Nature, 2021, 596(7871): 244-9.
[47] GAO T B, ZHANG J J, WEN J, et al. Single-Molecule MicroRNA Electrochemiluminescence Detection Using Cyclometalated Dinuclear Ir(III) Complex with Synergistic Effect [J]. Anal Chem, 2020, 92(1): 1268-75.
[48] LI X, DU Y, WANG H, et al. Self-Supply of H2O2 and O2 by Hydrolyzing CaO2 to Enhance the Electrochemiluminescence of Luminol Based on a Closed Bipolar Electrode [J]. Anal Chem, 2020, 92(18): 12693-9.
[49] J.P. CHENG L L, J. ZHANG, F. LIU, X.B. ZHANG. Influences of anion exchange and phase transformation on the supercapacitive properti es of aCo(OH)2 [J]. 2014.
[50] CHEN P, XU K, TONG Y, et al. Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction [J]. Inorganic Chemistry Frontiers, 2016, 3(2): 236-42.
[51] HAN A, ALJARB A, LIU S, et al. Growth of 2H stacked WSe2 bilayers on sapphire [J]. Nanoscale Horizons, 2019, 4(6): 1434-42.
[52] 杨晨, 高凤雨, 唐晓龙, et al. 二维材料的合成方法及在催化领域应用的研究进展Review on the Synthesis Techniques of Two-dimensional Materials and Their Application in the Field of Catalysis [J]. 材料导报, 2020, 34(13): 13005-参考文献6216.
[53] CAI L, SHEARER M J, ZHAO Y, et al. Chemically Derived Kirigami of WSe2 [J]. J Am Chem Soc, 2018, 140(35): 10980-7.
[54] 刘广生. 硅烷偶联剂应用研究进展 [J]. 江西化工, 2019, (6).
[55] LIU Z, MA R, OSADA M, et al. Selective and controlled synthesis of alpha- and beta-cobalt hydroxides in highly developed hexagonal platelets [J]. Journal of the American Chemical Society, 2005, 127(40): 13869.
[56] LIU X, MA R, BANDO Y, et al. Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification [J]. Angew Chem Int Ed Engl, 2010, 49(44): 8253-6.
[57] REVIEW OF THE STRUCTURE AND THE ELECTROCHEMISTRY OF NICKEL HYDROXIDES AND OXY-HYDROXIDES [J]. 1982.
[58] HUANG L, JIANG J, AI L. Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis [J]. ACS Appl Mater Interfaces, 2017, 9(8): 7059-67.
[59] LYU F, BAI Y, WANG Q, et al. Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution [J]. Dalton Trans, 2017, 46(32): 10545-8.
[60] TAFEL J. Über die Polarisation bei kathodischer Wasserstoffentwicklung [J]. Zeitschrift für Physikalische Chemie, 1905, 50U(1): 641-712.
[61] HALL D S, LOCKWOOD D J, BOCK C, et al. Nickel hydroxides and related materials: a review of their structures, synthesis and properties [J]. Proc Math Phys Eng Sci, 2015, 471(2174): 20140792.
[62] CHEREPANOVA S, LEONT'EVA N, DROZDOV V, et al. Thermal evolution of Mg–Al and Ni–Al layered double hydroxides: the structure of the dehydrated phase [J]. Acta Crystallographica Section A Foundations and Advances, 2016.
[63] MEFFORD J T, AKBASHEV A R, KANG M, et al. Correlative operando microscopy of oxygen evolution electrocatalysts [J]. Nature, 2021, 593(7857): 67-73.
[64] MARCUS Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K [J]. J Chem Soc, Faraday Trans, 1991, 87(18): 2995-9.
[65] GAO J, TAO H, LIU B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media [J]. Adv Mater, 2021, 33(31): e2003786.
[66] LEE S, MOYSIADOU A, CHU Y-C, et al. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides [J]. Energy & Environmental Science, 2022, 15(1): 206-14.
[67] MOYSIADOU A, LEE S, HSU C S, et al. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step [J]. J Am Chem Soc, 2020, 142(27): 11901-14.
[68] WANG H Y, HUNG S F, HSU Y Y, et al. In Situ Spectroscopic Identification of mu-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst [J]. J Phys Chem Lett, 2016, 7(23): 4847-53.
[69] TSE E C M, HOANG T T H, VARNELL J A, et al. Observation of an Inverse Kinetic Isotope Effect in Oxygen Evolution Electrochemistry [J]. ACS Catalysis, 2016, 6(9): 5706-14.
修改评论