中文版 | English
题名

基于电化学发光技术的纳米材料电催化性能表征方法

其他题名
CHARACTERIZATION OF ELECTROCATALYTIC PROPERTIES OF NANOMATERIALS BASED ON ELECTROCHEMILUMINESCENCE TECHNOLOGY
姓名
姓名拼音
ZHAO Xin
学号
12032093
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
郝瑞
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

新能源的开发与利用是突破人类目前面临环境污染和能源危机的必由 之路。氢气作为一种能量密集且环境友好的燃料得到了重点的关注,利用 电解水技术将可持续能源转化为氢储存起来是后续利用氢的重要方法。但 是由于电解水的半反应氧析出反应的动力学缓慢,其能量利用效率一直不 尽人意。随着针对氧析出反应的电催化剂的研究,人们对氧析出反应的具 体过程及电催化剂在催化过程中的性能改变仍存在许多困惑。为了解决这 些困惑,针对电催化剂催化过程的原位界面成像分析引起广泛的研究热潮。 电化学发光技术由于其高信噪比、时空可控性及仪器简单等优点,逐渐成 为一种研究电化学界面反应的有效手段,目前被广泛应用于免疫分析、电 化学反应机理和动力学研究等领域。而 Co(OH) 2作为一种层状双氢氧化物, 具有良好的催化氧析出反应的性质,且其在催化过程中包含了丰富的元素 价态信息。利用电化学发光技术对 Co(OH)2 的催化过程进行成像分析既可 以获得催化活性的位点信息,也可以获得催化反应的机理信息。此外,紫 外可见光谱对元素价态信息非常敏感,因此,本文搭建了一套电化学发光 成像系统用于研究电催化剂 Co(OH)2 在催化氧析出反应过程中催化状态的 改变,并利用紫外可见光谱成像解释其反应机理以及结构-性能关系。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts [J]. Nature Energy, 2019, 4(6): 430-3.
[2] ZHANG J, YU L, CHEN Y, et al. Designed Formation of Double-Shelled Ni-Fe Layered-Double-Hydroxide Nanocages for Efficient Oxygen Evolution Reaction [J]. Adv Mater, 2020, 32(16): e1906432.
[3] DAU H, LIMBERG C, REIER T, et al. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J]. ChemCatChem, 2010, 2(7): 724-61.
[4] HONG W T, RISCH M, STOERZINGER K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis [J]. Energy & Environmental Science, 2015, 8(5): 1404-27.
[5] LU Y-C, GALLANT B M, KWABI D G, et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance [J]. Energy & Environmental Science, 2013, 6(3).
[6] PINAUD B A, BENCK J D, SEITZ L C, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry [J]. Energy & Environmental Science, 2013, 6(7).
[7] HAMEL J A, SUNG K, JARVI T D, et al. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts [J]. Science, 2011.
[8] MCKONE J R, LEWIS N S, GRAY H B. Will Solar-Driven Water-Splitting Devices See the Light of Day? [J]. Chemistry of Materials, 2013, 26(1): 407-14.
[9] HUANG L, ZAMAN S, TIAN X, et al. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells [J]. Acc Chem Res, 2021, 54(2): 311-22.
[10] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction [J]. J Am Chem Soc, 2013, 135(45): 16977-87.
[11] CAO R, LEE J-S, LIU M, et al. Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J]. Advanced Energy Materials, 2012, 2(7): 816-29.
[12] LI X, WALSH F C, PLETCHER D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers [J]. Phys Chem Chem Phys, 2011, 13(3): 1162-7.
[13] BURKE M S, ENMAN L J, BATCHELLOR A S, et al. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles [J]. Chemistry of Materials, 2015, 27(22): 7549-58.
[14] ZUO S, WU Z P, ZHANG H, et al. Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis [J]. Advanced Energy Materials, 2022.
[15] MEFFORD J T, ZHAO Z, BAJDICH M, et al. Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches [J]. Energy & Environmental Science, 2020, 13(2): 622-34.
[16] KUAI C, XU Z, XI C, et al. Phase segregation reversibility in mixed-metal 参考文献60hydroxide water oxidation catalysts [J]. Nature Catalysis, 2020, 3(9): 743-53.
[17] 徐国宝, 董绍俊. 电化学发光及其应用 [J]. 分析化学, 2001, 29(1): 6.
[18] YANG M, CHEN R, YI C. Electro Chemo Luminescence (ECL) [M]//LI D. Encyclopedia of Microfluidics and Nanofluidics. Boston, MA; Springer US. 2013: 1-11.
[19] SAQIB M, FAN Y, HAO R, et al. Optical imaging of nanoscale electrochemical interfaces in energy applications [J]. Nano Energy, 2021, 90.
[20] HARVEY N. Luminescence during Electrolysis [J]. 1929.
[21] HUA C. Electrochemiluminescence of luminol in dimethyl sulfoxide at a polycrystalline gold electrode [J]. Electrochimica Acta, 2006.
[22] CHEN M M, ZHAO W, ZHU M J, et al. Spatiotemporal imaging of electrocatalytic activity on single 2D gold nanoplates via electrogenerated chemiluminescence microscopy [J]. Chem Sci, 2019, 10(15): 4141-7.
[23] TOKEL N E, BARD A J. Electrogenerated Chemiluminescence. Electrochemistry and Emission from Systems Containing Tris(2,2 ′ -bipyridine)ruthenium (II) Dichloride [J]. Journal of the American Chemical Society, 1972, 94(8): 2862-3.
[24] CHANG M M, SAJI T, BARD A J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions [J]. Journal of the American Chemical Society, 1977, 99(16).
[25] WHITE H S, BARD A J. Electrogenerated Chemiluminescence. 41. Electrogenerated Chemiluminescence and Chemiluminescence of the Ru(2,2'-bpy)3(2+)-S2O8(2-) System in Acetonitrile-Water Solutions [J]. Journal of the American Chemical Society, 1982, 104(25): 6891-5.
[26] NOFFSINGER J B, DANIELSON N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Analytical Chemistry, 1987, 59(6).
[27] ZU Y, BARD A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity [J]. Analytical Chemistry, 2000, 72(14): 3223-32.
[28] ZU Y, BARD A J. Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris(2,2')bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity [J]. Analytical Chemistry, 2001, 73(16): 3960-4.
[29] MIAO W, CHOI J P, BARD A J. Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA+ Cation Radicals [J]. Journal of the American Chemical Society, 2003, 124(48): 14478-85.
[30] CHEN Y, FU J, CUI C, et al. In Situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation [J]. Anal Chem, 2018, 90(14): 8635-41.
[31] ZHU M J, PAN J B, WU Z Q, et al. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle [J]. Angew Chem Int Ed Engl, 2018, 57(15): 4010-4.
[32] CHEN M M, XU C H, ZHAO W, et al. Observing the structure-dependent electrocatalytic activity of bimetallic Pd-Au nanorods at the single-particle level [J]. Chem Commun (Camb), 2020, 56(23): 3413-6.
[33] CHEN M M, XU C H, ZHAO W, et al. Single Cell Imaging of Electrochemiluminescence-driven Photodynamic Therapy [J]. Angew Chem Int Ed Engl, 2022.
[34] FAN Z, YAO B, DING Y, et al. Entropy-driven amplified 参考文献61electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds [J]. Biosens Bioelectron, 2021, 178: 113015.
[35] LIU P F, ZHAO K R, LIU Z J, et al. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection [J]. Biosens Bioelectron, 2021, 176: 112954.
[36] ANDERSON T J, DEFNET P A, ZHANG B. Electrochemiluminescence (ECL)-Based Electrochemical Imaging Using a Massive Array of Bipolar Ultramicroelectrodes [J]. Anal Chem, 2020, 92(9): 6748-55.
[37] FOSDICK S E, KNUST K N, SCIDA K, et al. Bipolar electrochemistry [J]. Angew Chem Int Ed Engl, 2013, 52(40): 10438-56.
[38] ISMAIL A, VOCI S, PHAM P, et al. Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging [J]. Anal Chem, 2019, 91(14): 8900-7.
[39] MA C, WU W, LI L, et al. Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters [J]. Chem Sci, 2018, 9(29): 6167-75.
[40] MA C, WEI H F, WANG M X, et al. Hydrogen Evolution Reaction Monitored by Electrochemiluminescence Blinking at Single-Nanoparticle Level [J]. Nano Lett, 2020, 20(7): 5008-16.
[41] A T, KLAR, W S, et al. Subdiffraction resolution in far-field fluorescence microscopy [J]. Optics letters, 1999.
[42] HELL S W. Strategy for far-field optical imaging and writing without diffraction limit [J]. Physics Letters A, 2004, 326(1): 140-5.
[43]MATS G L G, WEBB W W. Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-6.
[44] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution [J]. Science, 2006, 313(5793): 1642-5.
[45] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-6.
[46] DONG J, LU Y, XU Y, et al. Direct imaging of single-molecule electrochemical reactions in solution [J]. Nature, 2021, 596(7871): 244-9.
[47] GAO T B, ZHANG J J, WEN J, et al. Single-Molecule MicroRNA Electrochemiluminescence Detection Using Cyclometalated Dinuclear Ir(III) Complex with Synergistic Effect [J]. Anal Chem, 2020, 92(1): 1268-75.
[48] LI X, DU Y, WANG H, et al. Self-Supply of H2O2 and O2 by Hydrolyzing CaO2 to Enhance the Electrochemiluminescence of Luminol Based on a Closed Bipolar Electrode [J]. Anal Chem, 2020, 92(18): 12693-9.
[49] J.P. CHENG L L, J. ZHANG, F. LIU, X.B. ZHANG. Influences of anion exchange and phase transformation on the supercapacitive properti es of aCo(OH)2 [J]. 2014.
[50] CHEN P, XU K, TONG Y, et al. Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction [J]. Inorganic Chemistry Frontiers, 2016, 3(2): 236-42.
[51] HAN A, ALJARB A, LIU S, et al. Growth of 2H stacked WSe2 bilayers on sapphire [J]. Nanoscale Horizons, 2019, 4(6): 1434-42.
[52] 杨晨, 高凤雨, 唐晓龙, et al. 二维材料的合成方法及在催化领域应用的研究进展Review on the Synthesis Techniques of Two-dimensional Materials and Their Application in the Field of Catalysis [J]. 材料导报, 2020, 34(13): 13005-参考文献6216.
[53] CAI L, SHEARER M J, ZHAO Y, et al. Chemically Derived Kirigami of WSe2 [J]. J Am Chem Soc, 2018, 140(35): 10980-7.
[54] 刘广生. 硅烷偶联剂应用研究进展 [J]. 江西化工, 2019, (6).
[55] LIU Z, MA R, OSADA M, et al. Selective and controlled synthesis of alpha- and beta-cobalt hydroxides in highly developed hexagonal platelets [J]. Journal of the American Chemical Society, 2005, 127(40): 13869.
[56] LIU X, MA R, BANDO Y, et al. Layered cobalt hydroxide nanocones: microwave-assisted synthesis, exfoliation, and structural modification [J]. Angew Chem Int Ed Engl, 2010, 49(44): 8253-6.
[57] REVIEW OF THE STRUCTURE AND THE ELECTROCHEMISTRY OF NICKEL HYDROXIDES AND OXY-HYDROXIDES [J]. 1982.
[58] HUANG L, JIANG J, AI L. Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis [J]. ACS Appl Mater Interfaces, 2017, 9(8): 7059-67.
[59] LYU F, BAI Y, WANG Q, et al. Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution [J]. Dalton Trans, 2017, 46(32): 10545-8.
[60] TAFEL J. Über die Polarisation bei kathodischer Wasserstoffentwicklung [J]. Zeitschrift für Physikalische Chemie, 1905, 50U(1): 641-712.
[61] HALL D S, LOCKWOOD D J, BOCK C, et al. Nickel hydroxides and related materials: a review of their structures, synthesis and properties [J]. Proc Math Phys Eng Sci, 2015, 471(2174): 20140792.
[62] CHEREPANOVA S, LEONT'EVA N, DROZDOV V, et al. Thermal evolution of Mg–Al and Ni–Al layered double hydroxides: the structure of the dehydrated phase [J]. Acta Crystallographica Section A Foundations and Advances, 2016.
[63] MEFFORD J T, AKBASHEV A R, KANG M, et al. Correlative operando microscopy of oxygen evolution electrocatalysts [J]. Nature, 2021, 593(7857): 67-73.
[64] MARCUS Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K [J]. J Chem Soc, Faraday Trans, 1991, 87(18): 2995-9.
[65] GAO J, TAO H, LIU B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media [J]. Adv Mater, 2021, 33(31): e2003786.
[66] LEE S, MOYSIADOU A, CHU Y-C, et al. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides [J]. Energy & Environmental Science, 2022, 15(1): 206-14.
[67] MOYSIADOU A, LEE S, HSU C S, et al. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step [J]. J Am Chem Soc, 2020, 142(27): 11901-14.
[68] WANG H Y, HUNG S F, HSU Y Y, et al. In Situ Spectroscopic Identification of mu-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst [J]. J Phys Chem Lett, 2016, 7(23): 4847-53.
[69] TSE E C M, HOANG T T H, VARNELL J A, et al. Observation of an Inverse Kinetic Isotope Effect in Oxygen Evolution Electrochemistry [J]. ACS Catalysis, 2016, 6(9): 5706-14.

所在学位评定分委会
化学系
国内图书分类号
O657.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336350
专题理学院_化学系
推荐引用方式
GB/T 7714
赵鑫. 基于电化学发光技术的纳米材料电催化性能表征方法[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032093-赵鑫-化学系.pdf(5001KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵鑫]的文章
百度学术
百度学术中相似的文章
[赵鑫]的文章
必应学术
必应学术中相似的文章
[赵鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。