[1] PAGE M J, GRIFFITHS T A, BLEACKLEY M R, et al. Proteomics: applications relevant to transfusion medicine [J]. Transfus Med Rev, 2006, 20(1): 63-74.
[2] LI X J, HAYWARD C, FONG P Y, et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules [J]. Sci Transl Med, 2013, 5(207): 207ra142.
[3] ROZANOVA S, BARKOVITS K, NIKOLOV M, et al. Quantitative mass spectrometry-based proteomics: An overview [J]. Methods Mol Biol, 2021, 2228: 85- 116.
[4] PETROTCHENKO E V, BORCHERS C H. Protein chemistry combined with mass spectrometry for protein structure determination [J]. Chem Rev, 2021.
[5] SHARIFI TABAR M, FRANCIS H, YEO D, et al. Mapping oncogenic protein interactions for precision medicine [J]. Int J Cancer, 2022.
[6] THOMAS S L, THACKER J B, SCHUG K A, et al. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis [J]. J Sep Sci, 2021, 44(1): 211-46.
[7] YATES J R, RUSE C I, NAKORCHEVSKY A. Proteomics by mass spectrometry: approaches, advances, and applications [J]. Annu Rev Biomed Eng, 2009, 11: 49-79.
[8] YATES J R, 3RD. Mass spectral analysis in proteomics [J]. Annu Rev Biophys Biomol Struct, 2004, 33: 297-316.
[9] CASSIDY L, KAULICH P T, MAAß S, et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides [J]. Proteomics, 2021, 21(23-24): e2100008.
[10] ALEXOVIČ M, SABO J, LONGUESPéE R. Microproteomic sample preparation [J]. Proteomics, 2021, 21(9): e2000318.
[11] MA S, LI Y, MA C, et al. Challenges and advances in the fabrication of monolithic bioseparation materials and their applications in proteomics research [J]. Adv Mater, 2019, 31(50): e1902023.
[12] LYNCH K B, REN J, BECKNER M A, et al. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications [J]. Anal Chim Acta, 2019, 1046: 48-68.
[13] LUO Q, YUE G, VALASKOVIC G A, et al. On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-microm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis [J]. Anal Chem, 2007, 79(16): 6174-81. 51参考文献
[14] WANG F J, DONG J, JIANG X G, et al. Capillary trap column with strong cation- exchange monolith for automated shotgun proteome analysis [J]. Anal Chem, 2007, 79(17): 6599-606.
[15] LUO Q, SHEN Y, HIXSON K K, et al. Preparation of 20-microm-i.d. silica-based monolithic columns and their performance for proteomics analyses [J]. Anal Chem, 2005, 77(15): 5028-35.
[16] LUO Q, PAGE J S, TANG K, et al. MicroSPE-nanoLC-ESI-MS/MS using 10- microm-i.d. silica-based monolithic columns for proteomics [J]. Anal Chem, 2007, 79(2): 540-5.
[17] WU M H, WU R A, WANG F J, et al. "One-pot" process for fabrication of organic- silica hybrid monolithic capillary columns using organic monomer and alkoxysilane [J]. Anal Chem, 2009, 81(9): 3529-36.
[18] XIE C, YE M, JIANG X, et al. Octadecylated silica monolith capillary column with integrated nanoelectrospray ionization emitter for highly efficient proteome analysis [J]. Mol Cell Proteomics, 2006, 5(3): 454-61.
[19] FENG S, PAN C, JIANG X, et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis [J]. Proteomics, 2007, 7(3): 351-60.
[20] LIU G Z, FU T, HAN Y, et al. Probing protein-protein interactions with label-free mass spectrometry quantification in combination with affinity purification by spin- tip affinity columns [J]. Anal Chem, 2020, 92(5): 3913-22.
[21] FENG S, YE M, JIANG X, et al. Coupling the immobilized trypsin microreactor of monolithic capillary with muRPLC-MS/MS for shotgun proteome analysis [J]. J Proteome Res, 2006, 5(2): 422-8.
[22] MA J, LIANG Z, QIAO X, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity [J]. Anal Chem, 2008, 80(8): 2949-56.
[23] SCHLEY C, SWART R, HUBER C G. Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one- and two-dimensional separations [J]. J Chromatogr A, 2006, 1136(2): 210-20.
[24] MA J, LIU J, SUN L, et al. Online integration of multiple sample pretreatment steps involving denaturation, reduction, and digestion with microflow reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for high- throughput proteome profiling [J]. Anal Chem, 2009, 81(15): 6534-40.
[25] TIAN R J, WANG S A, ELISMA F, et al. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation [J]. Mol Cell Proteomics, 2011, 10(2): M110 000679.
[26] ZHANG Z B, SUN L L, ZHU G J, et al. Nearly 1000 protein identifications from 50 ng of Xenopus laevis zygote homogenate using online sample preparation on a strong cation exchange monolith based microreactor coupled with capillary zone electrophoresis [J]. Anal Chem, 2016, 88(1): 877-82.
[27] JIANG Z J, SMITH N W, FERGUSON P D, et al. Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes [J]. Anal Chem, 2007, 79(3): 1243-50.
[28] URBAN J, SKERIKOVA V, JANDERA P, et al. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds [J]. J Sep Sci, 2009, 32(15-16): 2530-43.
[29] FOO H C, HEATON J, SMITH N W, et al. Monolithic poly (SPE-co-BVPE) capillary columns as a novel hydrophilic interaction liquid chromatography stationary phase for the separation of polar analytes [J]. Talanta, 2012, 100: 344-8.
[30] LIN H, OU J, ZHANG Z, et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "one-pot" approach for hydrophilic-interaction liquid chromatography (HILIC) [J]. Anal Chem, 2012, 84(6): 2721-8.
[31] JIANG Z, REILLY J, EVERATT B, et al. Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography [J]. J Chromatogr A, 2009, 1216(12): 2439-48.
[32] WANG Q, ZHANG Q, HUANG H, et al. Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography [J]. Anal Chim Acta, 2020, 1101: 222-9.
[33] MAO Z, LI Z, HU C, et al. Glycine-modified organic polymer monolith featuring zwitterionic functionalities for hydrophilic capillary electrochromatography [J]. J Chromatogr A, 2020, 1629: 461497.
[34] FU H, XIE C, DONG J, et al. Monolithic column with zwitterionic stationary phase for capillary electrochromatography [J]. Anal Chem, 2004, 76(16): 4866-74.
[35] AN R, WENG Q, LI J. Silica-particle-supported zwitterionic polymer monolith for microcolumn liquid chromatography [J]. J Sep Sci, 2014, 37(19): 2633-40.
[36] GO E P, REBECCHI K R, DESAIRE H. In-solution digestion of glycoproteins for glycopeptide-based mass analysis [J]. Methods Mol Biol, 2013, 951: 103-11.
[37] WIŚNIEWSKI J R, ZOUGMAN A, NAGARAJ N, et al. Universal sample preparation method for proteome analysis [J]. Nat Methods, 2009, 6(5): 359-62.
[38] ZHANG Z B, DUBIAK K M, HUBER P W, et al. Miniaturized filter-aided sample preparation (MICRO-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in Xenopus laevis embryos [J]. Anal Chem, 2020, 92(7): 5554-60.
[39] KULAK N A, PICHLER G, PARON I, et al. Minimal, encapsulated proteomic- sample processing applied to copy-number estimation in eukaryotic cells [J]. Nat Methods, 2014, 11(3): 319-24.
[40] HUGHES C S, MOGGRIDGE S, MüLLER T, et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments [J]. Nat Protoc, 2019, 14(1): 68-85.
[41] MULLER T, KALXDORF M, LONGUESPEE R, et al. Automated sample preparation with SP3 for low-input clinical proteomics [J]. Mol Syst Biol, 2020, 16(1): e9111.
[42] CHEN W D, WANG S, ADHIKARI S, et al. Simple and integrated spintip-based technology applied for deep proteome profiling [J]. Anal Chem, 2016, 88(9): 4864- 71.
[43] LU X, LIN L, ZHOU W B, et al. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling [J]. J Chromatogr A, 2018, 1564: 76-84.
[44] YE X T, YANG Y, ZHOU J H, et al. Combinatory strategy using nanoscale proteomics and machine learning for T cell subtyping in peripheral blood of single multiple myeloma patients [J]. Anal Chim Acta, 2021, 1173.
[45] XU R L, TANG J, DENG Q T, et al. Spatial-resolution cell type proteome profiling of cancer tissue by fully integrated proteomics technology [J]. Anal Chem, 2018, 90(9): 5879-86.
[46] BACHE N, GEYER P E, BEKKER-JENSEN D B, et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics [J]. Mol Cell Proteomics, 2018, 17(11): 2284-96.
[47] KRIEGER J R, WYBENGA-GROOT L E, TONG J, et al. Evosep One enables robust deep proteome coverage using tandem mass tags while significantly reducing instrument time [J]. J Proteome Res, 2019, 18(5): 2346-53.
[48] WILLEMS S, VOYTIK E, SKOWRONEK P, et al. AlphaTims: Indexing trapped ion mobility spectrometry-TOF data for fast and easy accession and visualization [J]. Mol Cell Proteomics, 2021, 20: 100149.
[49] MEIER F, BRUNNER A D, FRANK M, et al. DiaPASEF: Parallel accumulation- serial fragmentation combined with data-independent acquisition [J]. Nat Methods, 2020, 17(12): 1229-36.
[50] MEIER F, BRUNNER A D, KOCH S, et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer [J]. Mol Cell Proteomics, 2018.
[51] ECKERT S, CHANG Y C, BAYER F P, et al. Evaluation of disposable trap column nanoLC-FAIMS-MS/MS for the proteomic analysis of FFPE tissue [J]. J Proteome Res, 2021, 20(12): 5402-11.
[52] BRUNNER A-D, THIELERT M, VASILOPOULOU C G, et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation [J]. bioRxiv, 2021: 2020.12.22.423933.
[53] BENDALL S C, SIMONDS E F, QIU P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum [J]. Science, 2011, 332(6030): 687-96.
[54] CHEN Q, YAN G, GAO M, et al. Ultrasensitive Proteome profiling for 100 living cells by direct cell injection, online digestion and nano-LC-MS/MS analysis [J]. Anal Chem, 2015, 87(13): 6674-80.
[55] SHAO X, WANG X, GUAN S, et al. Integrated proteome analysis device for fast single-cell protein profiling [J]. Anal Chem, 2018, 90(23): 14003-10.
[56] LI Z Y, HUANG M, WANG X K, et al. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis [J]. Anal Chem, 2018, 90(8): 5430-8.
[57] ZHU Y, PIEHOWSKI P D, ZHAO R, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells [J]. Nat Commun, 2018, 9(1): 882.
[58] MEIER F, BRUNNER A D, KOCH S, et al. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer [J]. Mol Cell Proteomics, 2018, 17(12): 2534-45.
[59] CONG Y, MOTAMEDCHABOKI K, MISAL S A, et al. Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell [J]. Chem Sci, 2020, 12(3): 1001-6.
[60] CONG Y, LIANG Y, MOTAMEDCHABOKI K, et al. Improved single-cell proteome coverage using narrow-bore packed nanoLC columns and ultrasensitive mass spectrometry [J]. Anal Chem, 2020, 92(3): 2665-71.
[61] YANG Y, SU Y, WANG X, et al. Fritted tip capillary column with negligible dead volume facilitated ultrasensitive and deep proteomics [J]. Analytica Chimica Acta, 2022: 339615.
[62] JMEIAN Y, EL RASSI Z. Tandem affinity monolithic microcolumns with immobilized protein A, protein G', and antibodies for depletion of high abundance proteins from serum samples: integrated microcolumn-based fluidic system for simultaneous depletion and tryptic digestion [J]. J Proteome Res, 2007, 6(3): 947-54.
[63] DONG M, WU M, WANG F, et al. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest [J]. Anal Chem, 2010, 82(7): 2907-15.
[64] NALDI M, ČERNIGOJ U, ŠTRANCAR A, et al. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis [J]. Talanta, 2017, 167: 143-57.
[65] WILHELM M, SCHLEGL J, HAHNE H, et al. Mass-spectrometry-based draft of the human proteome [J]. Nature, 2014, 509(7502): 582-7.
[66] WITZE E S, OLD W M, RESING K A, et al. Mapping protein post-translational modifications with mass spectrometry [J]. Nat Methods, 2007, 4(10): 798-806.
[67] CHOUDHARY C, KUMAR C, GNAD F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions [J]. Science, 2009, 325(5942): 834-40.
[68] HAN X M, ASLANIAN A, YATES J R. Mass spectrometry for proteomics [J]. Curr Opin Chem Biol, 2008, 12(5): 483-90.
[69] GINGRAS A C, GSTAIGER M, RAUGHT B, et al. Analysis of protein complexes using mass spectrometry [J]. Nat Rev Mol Cell Biol, 2007, 8(8): 645-54.
[70] WASHBURN M P, WOLTERS D, YATES J R, 3RD. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat Biotechnol, 2001, 19(3): 242-7.
[71] JIANG S, ZHANG Z, LI L. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies [J]. J Chromatogr A, 2015, 1412: 75-81.
[72] MASUDA T, TOMITA M, ISHIHAMA Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis [J]. J Proteome Res, 2008, 7(2): 731-40.
修改评论