[1] HENNING T, SALAMA F. Carbon in the universe[J]. Science, 1998, 282(5397): 2204-2210.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669.
[3] The rise and rise of graphene[J]. Nat Nanotechnol, 2010, 5(11): 755.
[4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[5] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[6] STACE A J, O'BRIEN P. Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2076): 20160278.
[7] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007(S1): 77-82.
[8] ZHAO J, ZHANG X, DI J, et al. Double-peak mechanical properties of carbon-nanotube fibers[J]. Small, 2010, 6(22): 2612-2617.
[9] GAO G, ÇAGIN T, GODDARD W A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes[J]. Nanotechnology, 1998, 9(3): 184-191.
[10] BAI Y, SHEN B, ZHANG S, et al. Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density[J]. Adv Mater, 2019, 31(9): e1800680.
[11] GAO E, LI R, BAUGHMAN R H. Predicted Confinement-Enhanced Stability and Extraordinary Mechanical Properties for Carbon Nanotube Wrapped Chains of Linear Carbon[J]. ACS Nano, 2020, 14(12): 17071-17079.
[12] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[13] ODOM T W, HUANG J-L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391(6662): 62-64.
[14] ZHANG S, ZHANG N, ZHANG J. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907021-1907020.
[15] HAYASHI T, KIM Y A, MATOBA T, et al. Smallest Freestanding Single-Walled Carbon Nanotube[J]. Nano Letters, 2003, 3(7): 887-889.
[16] ZHANG C, BETS K, LEE S S, et al. Closed-Edged Graphene Nanoribbons from Large-Diameter Collapsed Nanotubes[J]. ACS Nano, 2012, 6(7): 6023-6032.
[17] DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-891.
[18] BERBER S, KWON Y-K, TOMáNEK D. Unusually High Thermal Conductivity of Carbon Nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[19] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys Rev Lett, 2001, 87(21): 215502.
[20] POP E, MANN D, WANG Q, et al. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[21] KUMANEK B, JANAS D. Thermal conductivity of carbon nanotube networks: a review[J]. Journal of Materials Science, 2019, 54(10): 7397-7427.
[22] MASHKOOR F, NASAR A, INAMUDDIN. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review[J]. Environmental Chemistry Letters, 2020, 18(3): 605-629.
[23] BERGMANN C. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications[M]. 2015.
[24] NIKITIN A, LI X, ZHANG Z, et al. Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C−H Bonds[J]. Nano Letters, 2008, 8(1): 162-167.
[25] LU C, CHUNG Y L, CHANG K F. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Res, 2005, 39(6): 1183-1189.
[26] 庄媛, 刘谌, 王宏煜. 碳纳米管吸附性能研究进展[J]. 科技资讯, 2009(18): 3.
[27] LOURENçO M A O, FONTANA M, JAGDALE P, et al. Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes[J]. Chemical Engineering Journal, 2021, 414
[28] WEI J, SUN W, PAN W, et al. Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation[J]. Chemical Engineering Journal, 2017, 312: 167-179.
[29] QIAN D, WAGNER, J. G, et al. Mechanics of carbon nanotubes[J]. Applied Mechanics Reviews, 2002, 55(6): 495-533.
[30] OVERNEY G, ZHONG W, TOMáNEK D. Structural rigidity and low frequency vibrational modes of long carbon tubules[J]. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1993, 27(1): 93-96.
[31] LU J P. Elastic Properties of Carbon Nanotubes and Nanoropes[J]. Physical Review Letters, 1997, 79(7): 1297-1300.
[32] YANG B X, PRAMODA K P, XU G Q, et al. Mechanical Reinforcement of Polyethylene Using Polyethylene-Grafted Multiwalled Carbon Nanotubes[J]. Advanced Functional Materials, 2007, 17(13): 2062-2069.
[33] GU D, RAO X, DAI D, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties[J]. Additive Manufacturing, 2019, 29
[34] SHI X, SITHARAMAN B, PHAM Q P, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(28): 4078-4090.
[35] PAN X, BAO X. The Effects of Confinement inside Carbon Nanotubes on Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562.
[36] SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chem Rev, 2013, 113(8): 5782-5816.
[37] SU D S, ZHANG J, FRANK B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3(2): 169-180.
[38] SU D S, WEN G, WU S, et al. Carbocatalysis in Liquid-Phase Reactions[J]. Angew Chem Int Ed Engl, 2017, 56(4): 936-964.
[39] YAN Y, MIAO J, YANG Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chem Soc Rev, 2015, 44(10): 3295-3346.
[40] GAO Y, HU G, ZHONG J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angew Chem Int Ed Engl, 2013, 52(7): 2109-2113.
[41] SAWANT S V, PATWARDHAN A W, JOSHI J B, et al. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review[J]. Chemical Engineering Journal, 2022, 427
[42] XIONG W, WANG Z, HE S, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis B: Environmental, 2020, 260
[43] YANG L, JIANG S, ZHAO Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew Chem Int Ed Engl, 2011, 50(31): 7132-7135.
[44] HE Z, JIANG Y, LI Y, et al. Boosting the electrocatalytic performance of carbon nanotubes toward V(V)/V(IV) reaction by sulfonation treatment[J]. International Journal of Energy Research, 2018, 42(4): 1625-1634.
[45] WANG L, ZHAO Y, LIN K, et al. Super-hydrophobic ordered mesoporous carbon monolith[J]. Carbon, 2006, 44(7): 1336-1339.
[46] CHOI M, RYOO R. Mesoporous carbons with KOH activated framework and their hydrogen adsorption[J]. Journal of Materials Chemistry, 2007, 17(39): 4204-4209.
[47] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.
[48] KWEON D H, OKYAY M S, KIM S J, et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency[J]. Nat Commun, 2020, 11(1): 1278.
[49] FAN J-J, FAN Y-J, WANG R-X, et al. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2017, 5(36): 19467-19475.
[50] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nat Mater, 2007, 6(7): 507-511.
[51] CHEN Z, GUAN Z, LI M, et al. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation[J]. Angew Chem Int Ed Engl, 2011, 50(21): 4913-4917.
[52] GUO S, PAN X, GAO H, et al. Probing the electronic effect of carbon nanotubes in catalysis: NH(3) synthesis with Ru nanoparticles[J]. Chemistry, 2010, 16(18): 5379-5384.
[53] DENG D, YU L, CHEN X, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew Chem Int Ed Engl, 2013, 52(1): 371-375.
[54] DENG J, REN P, DENG D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew Chem Int Ed Engl, 2015, 54(7): 2100-2104.
[55] JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Adv Mater, 2019, 31(41): e1904182.
[56] JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2022, 61(8): e202115619.
[57] YANG X, LIU T, LI R, et al. Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[58] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[59] BURTEAUX B, CLAYE A, SMITH B W, et al. Abundance of encapsulated C60 in single-wall carbon nanotubes[J]. Chemical Physics Letters, 1999, 310(1): 21-24.
[60] GUAN L, SHI Z, LI H, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes[J]. Chem Commun (Camb), 2004(17): 1988-1989.
[61] HAN W, FAN S, LI Q, et al. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction[J]. Science, 1997, 277(5330): 1287-1289.
[62] BENNETT L H, CUTHILL J R, MCALISTER A J, et al. Electronic Structure and Catalytic Behavior of Tungsten Carbide[J]. Science, 1974, 184(4136): 563-565.
[63] QIN D-Y, FAN K-N, GAO Z. Electronic structure and catalytic behavior of tungsten carbides[J]. Chinese Journal of Chemistry, 1991, 9(2): 97-101.
[64] REN H, HANSGEN D A, STOTTLEMYER A L, et al. Replacing Platinum with Tungsten Carbide (WC) for Reforming Reactions: Similarities in Ethanol Decomposition on Ni/Pt and Ni/WC Surfaces[J]. ACS Catalysis, 2011, 1(4): 390-398.
[65] EMIN S, ALTINKAYA C, SEMERCI A, et al. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 236: 147-153.
[66] XU Y T, XIAO X, YE Z M, et al. Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution[J]. J Am Chem Soc, 2017, 139(15): 5285-5288.
[67] ZHENG W, WANG L, DENG F, et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells[J]. Nat Commun, 2017, 8(1): 418.
[68] HUNT S T, MILINA M, ALBA-RUBIO A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016, 352(6288): 974-978.
[69] ZHENG H, GUO Y, ZHANG Y, et al. Hierarchical Hybrid of Few-Layer Graphene upon Tungsten Monocarbide Nanowires: Controlled Synthesis and Electrocatalytic Performance for Methanol Oxidation[J]. ACS Applied Energy Materials, 2018, 2(1): 328-337.
[70] ESMAEILIRAD M, BASKIN A, KONDORI A, et al. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction[J]. Nat Commun, 2021, 12(1): 5067.
[71] HUANG W, MENG H, GAO Y, et al. Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst[J]. Journal of Materials Chemistry A, 2019, 7(31): 18538-18546.
[72] WANG S L, ZHU Y, LUO X, et al. 2D WC/WO3Heterogeneous Hybrid for Photocatalytic Decomposition of Organic Compounds with Vis-NIR Light[J]. Advanced Functional Materials, 2018, 28(11)
[73] DAI T, LI C, LI L, et al. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions[J]. Angew Chem Int Ed Engl, 2018, 57(7): 1808-1812.
[74] JI N, ZHANG T, ZHENG M, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem Int Ed Engl, 2008, 47(44): 8510-8513.
[75] GHASEMPOUR H, ZAREKARIZI F, MORSALI A, et al. Development of a highly porous Fe-based MOF using symmetrically incompatible building blocks: Selective oxidation of benzyl alcohols[J]. Applied Materials Today, 2021, 24
[76] KUANG Y, ISLAM N M, NABAE Y, et al. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by Carbon‐Based Catalysts: A Nonmetallic Oxidation System[J]. Angewandte Chemie, 2009, 122(2): 446-450.
[77] LUO J, PENG F, YU H, et al. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes[J]. Chemical Engineering Journal, 2012, 204-206: 98-106.
[78] BAO X, LI H, WANG Z, et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde[J]. Applied Catalysis B: Environmental, 2021, 286
[79] GALVANIN F, SANKAR M, CATTANEO S, et al. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst[J]. Chemical Engineering Journal, 2018, 342: 196-210.
[80] WU G, GAO Y, MA F, et al. Catalytic oxidation of benzyl alcohol over manganese oxide supported on MCM-41 zeolite[J]. Chemical Engineering Journal, 2015, 271: 14-22.
[81] YU Y, LU B, WANG X, et al. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis[J]. Chemical Engineering Journal, 2010, 162(2): 738-742.
[82] FURUKAWA S, YOSHIDA Y, KOMATSU T. Chemoselective Hydrogenation of Nitrostyrene to Aminostyrene over Pd- and Rh-Based Intermetallic Compounds[J]. ACS Catalysis, 2014, 4(5): 1441-1450.
[83] CORMA A, SERNA P, CONCEPCIóN P, et al. Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics[J]. Journal of the American Chemical Society, 2008, 130(27): 8748-8753.
[84] MAO J, CHEN W, SUN W, et al. Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4-Nitrostyrene by Strain Regulation[J]. Angew Chem Int Ed Engl, 2017, 56(39): 11971-11975.
[85] 张梦茹, 张慧丹, 王鑫, 等 多金属氧酸盐化学研究进展与展望——评《化学基础论》[J]. 林产工业, 2021, 58(04): 123.
[86] 李佳欣, 杨敏, 程子峰, 等. 过渡金属取代型多金属氧酸盐催化反应研究进展[J]. 山东化工, 2021, 50(01): 80-81+84.
[87] GONG Q, WANG Y, HU Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nat Commun, 2016, 7: 13216.
[88] JORIO A, SAITO R. Raman spectroscopy for carbon nanotube applications[J]. Journal of Applied Physics, 2021, 129(2): 021102.
修改评论