中文版 | English
题名

单壁碳纳米管内腔碳化钨纳米线的合成及催化研究

姓名
姓名拼音
Yulong Yun
学号
12032100
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
杨烽
导师单位
化学系
论文答辩日期
2022-05-10
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

碳纳米管作为一种新兴的碳纳米材料,在各种催化反应中已经得到了较为广 泛的研究应用。其中空的一维结构和特殊的电子结构使其具有各种优良的性能,如 较高的比表面积、良好的热稳定性,优异的电学性质和机械强度等。W2C 作为一 种过渡金属碳化物,具有与贵金属 Pt 相似的电子结构。使得 W2C 在催化反应中也 具有很高的研究价值。 本文使用单壁碳纳米管作为载体,利用多酸团簇与单壁碳纳米管之间的氧化 还原反应进行限域自组装,将多酸团簇 H3PW12O40·xH2O 高效均匀地限域在单壁碳 纳米管的管腔中,之后通过在还原气氛下进行煅烧,使多酸团簇在管腔内演化,合 成了限域在单壁碳纳米管中的 W2C 纳米线。研究了 W2C 纳米线与单壁碳纳米管 之间的相互作用。研究发现限域在管内的 W2C 纳米线与管外负载的 W2C 纳米颗 粒相比在电子传输上有一定的差异,且多酸团簇的煅烧演化并未对碳纳米管的结 构产生破坏。 本文从两个方面对 W2C 与单壁碳纳米管在催化反应中的应用进行研究。一方 面利用 W2C 作为催化剂,研究限域在单壁碳纳米管内的 W2C 纳米线在苯甲醇氧 化反应中的催化行为。通过对比限域在单壁碳纳米管管内的 W2C 纳米线与负载在 碳载体外表面的 W2C 纳米颗粒的催化结果,发现单壁碳纳米管的隔绝并未对催化 剂的活性产生明显的限制。另一方面,限域在管腔内的 W2C 纳米线与单壁碳纳米 管之间的相互作用可以改变单壁碳纳米管表面的电子密度,从而影响负载在碳管 上催化剂的电子结构。通过在管壁上负载催化剂,研究电子结构的改变对催化剂在 不同催化反应中的催化行为的影响。 此外,本文对研究内容进行拓展,利用多酸团簇 H3PMo12O40·xH2O 在单壁碳 纳米管内合成 Mo2C 纳米线并进行了初步的催化研究。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] HENNING T, SALAMA F. Carbon in the universe[J]. Science, 1998, 282(5397): 2204-2210.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669.
[3] The rise and rise of graphene[J]. Nat Nanotechnol, 2010, 5(11): 755.
[4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[5] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[6] STACE A J, O'BRIEN P. Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2076): 20160278.
[7] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007(S1): 77-82.
[8] ZHAO J, ZHANG X, DI J, et al. Double-peak mechanical properties of carbon-nanotube fibers[J]. Small, 2010, 6(22): 2612-2617.
[9] GAO G, ÇAGIN T, GODDARD W A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes[J]. Nanotechnology, 1998, 9(3): 184-191.
[10] BAI Y, SHEN B, ZHANG S, et al. Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density[J]. Adv Mater, 2019, 31(9): e1800680.
[11] GAO E, LI R, BAUGHMAN R H. Predicted Confinement-Enhanced Stability and Extraordinary Mechanical Properties for Carbon Nanotube Wrapped Chains of Linear Carbon[J]. ACS Nano, 2020, 14(12): 17071-17079.
[12] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[13] ODOM T W, HUANG J-L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391(6662): 62-64.
[14] ZHANG S, ZHANG N, ZHANG J. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907021-1907020.
[15] HAYASHI T, KIM Y A, MATOBA T, et al. Smallest Freestanding Single-Walled Carbon Nanotube[J]. Nano Letters, 2003, 3(7): 887-889.
[16] ZHANG C, BETS K, LEE S S, et al. Closed-Edged Graphene Nanoribbons from Large-Diameter Collapsed Nanotubes[J]. ACS Nano, 2012, 6(7): 6023-6032.
[17] DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-891.
[18] BERBER S, KWON Y-K, TOMáNEK D. Unusually High Thermal Conductivity of Carbon Nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[19] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys Rev Lett, 2001, 87(21): 215502.
[20] POP E, MANN D, WANG Q, et al. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[21] KUMANEK B, JANAS D. Thermal conductivity of carbon nanotube networks: a review[J]. Journal of Materials Science, 2019, 54(10): 7397-7427.
[22] MASHKOOR F, NASAR A, INAMUDDIN. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review[J]. Environmental Chemistry Letters, 2020, 18(3): 605-629.
[23] BERGMANN C. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications[M]. 2015.
[24] NIKITIN A, LI X, ZHANG Z, et al. Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C−H Bonds[J]. Nano Letters, 2008, 8(1): 162-167.
[25] LU C, CHUNG Y L, CHANG K F. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Res, 2005, 39(6): 1183-1189.
[26] 庄媛, 刘谌, 王宏煜. 碳纳米管吸附性能研究进展[J]. 科技资讯, 2009(18): 3.
[27] LOURENçO M A O, FONTANA M, JAGDALE P, et al. Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes[J]. Chemical Engineering Journal, 2021, 414
[28] WEI J, SUN W, PAN W, et al. Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation[J]. Chemical Engineering Journal, 2017, 312: 167-179.
[29] QIAN D, WAGNER, J. G, et al. Mechanics of carbon nanotubes[J]. Applied Mechanics Reviews, 2002, 55(6): 495-533.
[30] OVERNEY G, ZHONG W, TOMáNEK D. Structural rigidity and low frequency vibrational modes of long carbon tubules[J]. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1993, 27(1): 93-96.
[31] LU J P. Elastic Properties of Carbon Nanotubes and Nanoropes[J]. Physical Review Letters, 1997, 79(7): 1297-1300.
[32] YANG B X, PRAMODA K P, XU G Q, et al. Mechanical Reinforcement of Polyethylene Using Polyethylene-Grafted Multiwalled Carbon Nanotubes[J]. Advanced Functional Materials, 2007, 17(13): 2062-2069.
[33] GU D, RAO X, DAI D, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties[J]. Additive Manufacturing, 2019, 29
[34] SHI X, SITHARAMAN B, PHAM Q P, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(28): 4078-4090.
[35] PAN X, BAO X. The Effects of Confinement inside Carbon Nanotubes on Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562.
[36] SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chem Rev, 2013, 113(8): 5782-5816.
[37] SU D S, ZHANG J, FRANK B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3(2): 169-180.
[38] SU D S, WEN G, WU S, et al. Carbocatalysis in Liquid-Phase Reactions[J]. Angew Chem Int Ed Engl, 2017, 56(4): 936-964.
[39] YAN Y, MIAO J, YANG Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chem Soc Rev, 2015, 44(10): 3295-3346.
[40] GAO Y, HU G, ZHONG J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angew Chem Int Ed Engl, 2013, 52(7): 2109-2113.
[41] SAWANT S V, PATWARDHAN A W, JOSHI J B, et al. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review[J]. Chemical Engineering Journal, 2022, 427
[42] XIONG W, WANG Z, HE S, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis B: Environmental, 2020, 260
[43] YANG L, JIANG S, ZHAO Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew Chem Int Ed Engl, 2011, 50(31): 7132-7135.
[44] HE Z, JIANG Y, LI Y, et al. Boosting the electrocatalytic performance of carbon nanotubes toward V(V)/V(IV) reaction by sulfonation treatment[J]. International Journal of Energy Research, 2018, 42(4): 1625-1634.
[45] WANG L, ZHAO Y, LIN K, et al. Super-hydrophobic ordered mesoporous carbon monolith[J]. Carbon, 2006, 44(7): 1336-1339.
[46] CHOI M, RYOO R. Mesoporous carbons with KOH activated framework and their hydrogen adsorption[J]. Journal of Materials Chemistry, 2007, 17(39): 4204-4209.
[47] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.
[48] KWEON D H, OKYAY M S, KIM S J, et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency[J]. Nat Commun, 2020, 11(1): 1278.
[49] FAN J-J, FAN Y-J, WANG R-X, et al. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2017, 5(36): 19467-19475.
[50] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nat Mater, 2007, 6(7): 507-511.
[51] CHEN Z, GUAN Z, LI M, et al. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation[J]. Angew Chem Int Ed Engl, 2011, 50(21): 4913-4917.
[52] GUO S, PAN X, GAO H, et al. Probing the electronic effect of carbon nanotubes in catalysis: NH(3) synthesis with Ru nanoparticles[J]. Chemistry, 2010, 16(18): 5379-5384.
[53] DENG D, YU L, CHEN X, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew Chem Int Ed Engl, 2013, 52(1): 371-375.
[54] DENG J, REN P, DENG D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew Chem Int Ed Engl, 2015, 54(7): 2100-2104.
[55] JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Adv Mater, 2019, 31(41): e1904182.
[56] JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2022, 61(8): e202115619.
[57] YANG X, LIU T, LI R, et al. Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[58] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[59] BURTEAUX B, CLAYE A, SMITH B W, et al. Abundance of encapsulated C60 in single-wall carbon nanotubes[J]. Chemical Physics Letters, 1999, 310(1): 21-24.
[60] GUAN L, SHI Z, LI H, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes[J]. Chem Commun (Camb), 2004(17): 1988-1989.
[61] HAN W, FAN S, LI Q, et al. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction[J]. Science, 1997, 277(5330): 1287-1289.
[62] BENNETT L H, CUTHILL J R, MCALISTER A J, et al. Electronic Structure and Catalytic Behavior of Tungsten Carbide[J]. Science, 1974, 184(4136): 563-565.
[63] QIN D-Y, FAN K-N, GAO Z. Electronic structure and catalytic behavior of tungsten carbides[J]. Chinese Journal of Chemistry, 1991, 9(2): 97-101.
[64] REN H, HANSGEN D A, STOTTLEMYER A L, et al. Replacing Platinum with Tungsten Carbide (WC) for Reforming Reactions: Similarities in Ethanol Decomposition on Ni/Pt and Ni/WC Surfaces[J]. ACS Catalysis, 2011, 1(4): 390-398.
[65] EMIN S, ALTINKAYA C, SEMERCI A, et al. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 236: 147-153.
[66] XU Y T, XIAO X, YE Z M, et al. Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution[J]. J Am Chem Soc, 2017, 139(15): 5285-5288.
[67] ZHENG W, WANG L, DENG F, et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells[J]. Nat Commun, 2017, 8(1): 418.
[68] HUNT S T, MILINA M, ALBA-RUBIO A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016, 352(6288): 974-978.
[69] ZHENG H, GUO Y, ZHANG Y, et al. Hierarchical Hybrid of Few-Layer Graphene upon Tungsten Monocarbide Nanowires: Controlled Synthesis and Electrocatalytic Performance for Methanol Oxidation[J]. ACS Applied Energy Materials, 2018, 2(1): 328-337.
[70] ESMAEILIRAD M, BASKIN A, KONDORI A, et al. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction[J]. Nat Commun, 2021, 12(1): 5067.
[71] HUANG W, MENG H, GAO Y, et al. Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst[J]. Journal of Materials Chemistry A, 2019, 7(31): 18538-18546.
[72] WANG S L, ZHU Y, LUO X, et al. 2D WC/WO3Heterogeneous Hybrid for Photocatalytic Decomposition of Organic Compounds with Vis-NIR Light[J]. Advanced Functional Materials, 2018, 28(11)
[73] DAI T, LI C, LI L, et al. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions[J]. Angew Chem Int Ed Engl, 2018, 57(7): 1808-1812.
[74] JI N, ZHANG T, ZHENG M, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem Int Ed Engl, 2008, 47(44): 8510-8513.
[75] GHASEMPOUR H, ZAREKARIZI F, MORSALI A, et al. Development of a highly porous Fe-based MOF using symmetrically incompatible building blocks: Selective oxidation of benzyl alcohols[J]. Applied Materials Today, 2021, 24
[76] KUANG Y, ISLAM N M, NABAE Y, et al. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by Carbon‐Based Catalysts: A Nonmetallic Oxidation System[J]. Angewandte Chemie, 2009, 122(2): 446-450.
[77] LUO J, PENG F, YU H, et al. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes[J]. Chemical Engineering Journal, 2012, 204-206: 98-106.
[78] BAO X, LI H, WANG Z, et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde[J]. Applied Catalysis B: Environmental, 2021, 286
[79] GALVANIN F, SANKAR M, CATTANEO S, et al. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst[J]. Chemical Engineering Journal, 2018, 342: 196-210.
[80] WU G, GAO Y, MA F, et al. Catalytic oxidation of benzyl alcohol over manganese oxide supported on MCM-41 zeolite[J]. Chemical Engineering Journal, 2015, 271: 14-22.
[81] YU Y, LU B, WANG X, et al. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis[J]. Chemical Engineering Journal, 2010, 162(2): 738-742.
[82] FURUKAWA S, YOSHIDA Y, KOMATSU T. Chemoselective Hydrogenation of Nitrostyrene to Aminostyrene over Pd- and Rh-Based Intermetallic Compounds[J]. ACS Catalysis, 2014, 4(5): 1441-1450.
[83] CORMA A, SERNA P, CONCEPCIóN P, et al. Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics[J]. Journal of the American Chemical Society, 2008, 130(27): 8748-8753.
[84] MAO J, CHEN W, SUN W, et al. Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4-Nitrostyrene by Strain Regulation[J]. Angew Chem Int Ed Engl, 2017, 56(39): 11971-11975.
[85] 张梦茹, 张慧丹, 王鑫, 等 多金属氧酸盐化学研究进展与展望——评《化学基础论》[J]. 林产工业, 2021, 58(04): 123.
[86] 李佳欣, 杨敏, 程子峰, 等. 过渡金属取代型多金属氧酸盐催化反应研究进展[J]. 山东化工, 2021, 50(01): 80-81+84.
[87] GONG Q, WANG Y, HU Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nat Commun, 2016, 7: 13216.
[88] JORIO A, SAITO R. Raman spectroscopy for carbon nanotube applications[J]. Journal of Applied Physics, 2021, 129(2): 021102.

所在学位评定分委会
化学系
国内图书分类号
O61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336352
专题理学院_化学系
推荐引用方式
GB/T 7714
贠玉龙. 单壁碳纳米管内腔碳化钨纳米线的合成及催化研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032100-贠玉龙-化学系.pdf(6940KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贠玉龙]的文章
百度学术
百度学术中相似的文章
[贠玉龙]的文章
必应学术
必应学术中相似的文章
[贠玉龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。