中文版 | English
题名

锌枝晶成核及生长溶解过程的超分辨成像研究

其他题名
STUDY ON SUPER-RESOLUTION IMAGING OF ZINC DENDRITE NUCLEATION, GROWTH AND DISSOLUTION
姓名
姓名拼音
MAO Jiaxin
学号
12032105
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
郝瑞
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在目前的电化学储能技术中,金属空气电池是一类具有广泛应用前景的电池。其中,由于高安全性,高重量比容量,高储量和低成本的优点,锌空气电池(ZABs)具有巨大的发展潜力。然而,锌枝晶的形成会导致电池容量损失和循环寿命的减少,严重制约了锌空气电池的发展。本文针对锌空气电池中的枝晶问题,利用全内反射暗场显微镜在纳米尺度上观测研究了枝晶生长和溶解过程的细节。在单核水平上证明了电流密度和电解液浓度对锌枝晶的成核、生长时间和生长方向具有重要影响。在低盐浓度和高电流密度的条件下,枝晶会快速成核,更容易沉积为树枝状枝晶。揭示了沉积形态(苔藓状或树枝状)高度受制于局部反应动力学,进一步证实了锌离子的耗尽以及副反应的发生是树枝状枝晶形成的关键因素。通过研究锌枝晶的溶解过程,证明了充电电流密度对宏观孤晶的生成起主导作用,放电电流密度对纳米孤晶的产生时间和生成数量有重要影响。随着充电电流密度的增大,宏观孤晶数量减少。随着放电电流密度的增大,纳米孤晶产生阶段和数量均增加。揭示了孤晶的总数量和固体电解质界面膜(SEI)的转化共同影响电池的库伦效率。除此之外,还对比了ZnSO4PEI添加剂和Zn(OTf)2电解液中孤晶及SEI的产生阶段和数量的不同,证明设计合适的电解液可以有效提高开发长寿命锌空气电池的使用寿命。

其他摘要

Metal-air batteries are considered to be a promising class of batteries among the electrochemical energy storage technologies. In particular, zinc-air batteries (ZABs) have powerful potential in virtue of their high safety, high specific capacity by weight, high reserves and low cost. However, dendrites lead to capacity loss and reduction in cycle life, which limit the development of Zn-air batteries. Herein, aiming at the dendrite problem in zinc-air batteries, we employed total internal reflection dark field microscopy to observe the details of the nanoscopic dendrite growth and dissolution process. The effects of current density and electrolyte concentration on zinc nucleation, growth time and growth direction were demonstrated at the single-nuclei level. With a low electrolyte concentration and high current density,zinc nucleates quickly and is easier to deposit as dendrites. The deposition morphology, mossy or dendritic, was revealed to be highly constrained by local reaction kinetics, confirming that depletion of zinc ions as well as side reactions are key factors in the formation of dendritic dendrites. The charge current density plays a dominant role in the generation of macroscopic orphaning, and the discharge current density has an important effect on the generation stage and amount of nanoscopic orphaning during the dissolution process of zinc dendrites. With the increase of charge current density, the quantity of macroscopic orphaning decreases. The discharge current density increases, and the quantity of generation stage and nanoscopic orphaning increases. It is revealed that both the quantity of orphaning and the conversion of solid electrolyte interface affect the coulombic efficiency of the cell. In addition, the generation stage, the quantity of orphaning and solid electrolyte interface in ZnSO4, PEI additives and Zn(OTf)2 electrolytes were compared, demonstrating that the design of a suitable electrolyte is necessary to develop long-life Zn air batteries.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] IIZUKA M. Diverse and uneven pathways towards transition to low carbon development: The case of solar PV technology in China [J]. Innovation and Development, 2015, 5(2): 241-61.
[2] 郑瑜, 刘涛, 胡耀宇, 等. 基于电化学储能的产业进入方式浅析 [J]. 能源科技, 2020, 18(01): 81-6.
[3] LIU C, Li F, MA L P, et al. Advanced materials for energy storage [J]. Advanced Materials, 2010, 22(8): E28-E62.
[4] 陈明福, 宾雪, 刘峻, 等. “清洁能源综合体”及其发展模式研究 [J]. 能源与环境, 2020, (06): 37-9.
[5] AHOUTOU Y, ILINCA A, ISSA M. Electrochemical cells and storage technologies to increase renewable energy share in cold climate conditions- critical assessment [J]. Energies, 2022, 15(4): 1579.
[6] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future [J]. Materials Today, 2015, 18(5): 252-64.
[7] LEE J S, SUN T K, CAO R, et al. Metal–air batteries with high energy density: Li–air versus Zn–air [J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[8] LIU J, XU C, CHEN Z, et al. Progress in aqueous rechargeable batteries [J]. Green Energy & Environment, 2018, 3(1): 20-41.
[9] GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium−air battery: Promise and challenges [J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2193-203.
[10] MA J, WEN J, ZHU H, et al. Electrochemical performances of Al–0.5Mg–0.1Sn–0.02In alloy in different solutions for Al–air battery [J]. Journal of Power Sources, 2015, 293: 592-8.
[11] ZHANG T, TAO Z, CHEN J. Magnesium–air batteries: From principle to application [J]. Materials Horizons, 2014, 1(2): 196-206.
[12] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1(4): 1-16.
[13] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode [J]. Nature Energy, 2016, 1(10): 16119.
[14] GOLDSTEIN J, BROWN I, KORETZ B. New developments in the electric fuel ltd. Zinc/air system [J]. Journal of Power Sources, 1999, 80(1): 171-9.
[15] PRAKOSO B, MAHBUB M A A, YILMAZ M, et al. Recent progress in extending the cycle-life of secondary Zn-air batteries [J]. ChemNanoMat, 2021, 7(4): 354-67.
[16] FU G, TANG Y, LEE J-M. Recent advances in carbon-based bifunctional oxygen electrocatalysts for Zn−air batteries [J]. ChemElectroChem, 2018, 5(11): 1424-34.
[17] FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc–air batteries: Progress, challenges, and perspectives [J]. Advanced Materials, 2017, 29(7): 1604685.
[18] Li Y, DAI H. Recent advances in zinc–air batteries [J]. Chemical Society Reviews, 2014, 43(15): 5257-75.
[19] 朱明骏, 袁振善, 桑林, 等. 金属/空气电池的研究进展 [J]. 电源技术, 2013, 36(12): 1953-5.
[20] LIU Q, PAN Z, WANG E, et al. Aqueous metal-air batteries: Fundamentals and applications [J]. Energy Storage Materials, 2020, 27: 478-505.
[21] ZHANG J, ZHOU Q, TANG Y, et al. Zinc–air batteries: Are they ready for prime time? [J]. Chemical Science, 2019, 10(39): 8924-9.
[22] MAINAR A R, IRUIN E, COLMENARES L C, et al. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc [J]. Journal of Energy Storage, 2018, 15: 304-28.
[23] FARMANI Z, SEDGHAMIZ M A, RAHIMPOUR M R. Electrolytes for zinc-air batteries [J]. Zinc Batteries, 2020: 187-213.
[24] GREGORY D P. Metal-air batteries [M]. London: Mills and Boon, 1972.
[25] YADAV G G, WEI X, MEEUS M. Chapter 3 - primary zinc-air batteries [M]//ARAI H, GARCHE J, COLMENARES L. Electrochemical power sources: Fundamentals, systems, and applications. Elsevier. 2021: 23-45.
[26] FOROOZAN T, SHARIFI ASL S, SHAHBAZIAN YASSAR R. Electrically rechargeable zinc-oxygen flow battery with high power density [J]. Electrochemistry Communications, 2016, 69: 24-7.
[27] STEIGER J, KRAMER D, MöNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution [J]. Electrochimica Acta, 2014, 136: 529-36.
[28] ZHANG Q, LUAN J, TANG Y, et al. Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries [J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-91.
[29] NELSON WEKER J, TONEY M F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials [J]. Advanced Functional Materials, 2015, 25(11): 1622-37.
[30] WANG C M. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view [J]. Journal of Materials Research, 2015, 30(3): 326-39.
[31] SHI Y, WAN J, LIU G X, et al. Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries [J]. Angewandte Chemie International Edition, 2020, 59(41): 18120-5.
[32] KüHNLE H, KNOBBE E, FIGGEMEIER E. In situ optical investigations of lithium depositions on pristine and aged lithium metal electrodes [J]. Journal of the Electrochemical Society, 2021, 168(2): 020510.
[33] HE Y, WANG H. In-situ neutron techniques for lithium ion and solid-state rechargeable batteries [M]. Handbook of solid state batteries. WORLD SCIENTIFIC. 2015: 51-77.
[34] LACEY S D, WAN J, CRESCE A V W, et al. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes [J]. Nano Letters, 2015, 15(2): 1018-24.
[35] ZHOU X, ZHANG Q, HAO Z, et al. Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy [J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53227-34.
[36] BLANC F, LESKES M, GREY C P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells [J]. Accounts of Chemical Research, 2013, 46(9): 1952-63.
[37] 樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述 [J]. 储能科学与技术, 2019, 8(6): 1040.
[38] SONG Y, HU J, TANG J, et al. Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications [J]. ACS Applied Materials & Interfaces, 2016, 8(46): 32031-40.
[39] YUFIT V, TARIQ F, EASTWOOD D S, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries [J]. Joule, 2019, 3(2): 485-502.
[40] 岳昕阳, 马萃, 包戬, 等. 金属锂负极失效机制及其先进表征技术 [J]. 物理化学学报, 2020, 37(2): 2005012-0.
[41] 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展 [J]. 储能科学与技术, 2019, 8(6): 1050.
[42] TRIPATHI A M, SU W N, HWANG B. In situ analytical techniques for battery interface analysis [J]. Chemical Society Reviews, 2018, 47 3: 736-851.
[43] Li M, RAN L, KNIBBE R. Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope [J]. The Journal of Physical Chemistry Letters, 2021, 12(2): 913-8.
[44] SASAKI Y, YOSHIDA K, KAWASAKI T, et al. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode [J]. Journal of Power Sources, 2021, 481: 228831.
[45] 林家耀. 原位电化学液体透射电镜技术研究锌的沉积 [D]; 厦门大学, 2019.
[46] CHEN B, ZHANG H, XUAN J, et al. Seeing is believing: In situ/operando optical microscopy for probing electrochemical energy systems [J]. Advanced Materials Technologies, 2020, 5(10): 2000555.
[47] YAMANAKA M, SMITH N I, FUJITA K. Introduction to super-resolution microscopy [J]. Microscopy, 2014, 63(3): 177-92.
[48] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-7.
[49] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-2.
[50] BETZIG E, PATTERSON GEORGE H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-5.
[51] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-6.
[52] HUANG B, BABCOCK H, ZHUANG X. Breaking the diffraction barrier: Super-resolution imaging of cells [J]. Cell, 2010, 143(7): 1047-58.
[53] SYDOR A M, CZYMMEK K J, PUCHNER E M, et al. Super-resolution microscopy: From single molecules to supramolecular assemblies [J]. Trends in Cell Biology, 2015, 25(12): 730-48.
[54] Li Q, YI T, WANG X, et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery [J]. Nano Energy, 2019, 63: 103895.
[55] FOROOZAN T, SHARIFI ASL S, SHAHBAZIAN YASSAR R. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques [J]. Journal of Power Sources, 2020, 461: 228135.
[56] ZHANG Z, SAID S, SMITH K, et al. Dendrite suppression by anode polishing in zinc-ion batteries [J]. Journal of Materials Chemistry A, 2021, 9(27): 15355-62.
[57] DIGGLE J, DESPIC A, BOCKRIS J M. The mechanism of the dendritic electrocrystallization of zinc [J]. Journal of the Electrochemical Society, 1969, 116(11): 1503.
[58] OREN Y, LANDAU U. Growth of zinc dendrites in acidic zinc chloride solutions [J]. Electrochimica Acta, 1982, 27(6): 739-48.
[59] CHEN C P, JORNé J. Fractal analysis of zinc electrodeposition [J]. Journal of the Electrochemical Society, 1990, 137(7): 2047.
[60] OTANI T, NAGATA M, FUKUNAKA Y, et al. Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution [J]. Electrochimica Acta, 2016, 206: 366-73.
[61] ZHOU X, LU Y, ZHANG Q, et al. Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system [J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55476-82.
[62] QIU H, DU X, ZHAO J, et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation [J]. Nature communications, 2019, 10(1): 1-12.
[63] JABBARI V, FOROOZAN T, SHAHBAZIAN-YASSAR R. Dendritic Zn deposition in zinc‐metal batteries and mitigation strategies [J]. Advanced Energy and Sustainability Research, 2021, 2(4): 2000082.
[64] WANG K, PEI P, MA Z, et al. Dendrite growth in the recharging process of zinc–air batteries [J]. Journal of Materials Chemistry A, 2015, 3(45): 22648-55.
[65] WANG R Y, KIRK D W, ZHANG G X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions [J]. Journal of the Electrochemical Society, 2006, 153(5): C357.
[66] LU W, XIE C, ZHANG H, et al. Inhibition of zinc dendrite growth in zinc‐based batteries [J]. ChemSusChem, 2018, 11(23): 3996-4006.
[67] BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by peg-200 additive [J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D23.
[68] BANIK S J, AKOLKAR R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive [J]. Electrochimica Acta, 2015, 179: 475-81.
[69] LIN M H, HUANG C J, CHENG P H, et al. Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: Mechanism studies of dendrite suppression and corrosion inhibition [J]. Journal of Materials Chemistry A, 2020, 8(39): 20637-49.
[70] BAYAGUUD A, LUO X, FU Y, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries [J]. ACS Energy Letters, 2020, 5(9): 3012-20.
[71] LEE S, KANG I, KIM J, et al. Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities [J]. Journal of Power Sources, 2020, 472: 228334.
[72] LU Q, LIU C, DU Y, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16869-75.
[73] LEE B S, CUI S, XING X, et al. Dendrite suppression membranes for rechargeable zinc batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38928-35.
[74] KANOUFI F. Electrochemistry and optical microscopy [J]. Encyclopedia of Electrochemistry, 2021: 1-80.
[75] BURGHARDT T P, HIPP A D, AJTAI K. Around-the-objective total internal reflection fluorescence microscopy [J]. Applied Optics, 2009, 48(32): 6120-31.
[76] BRASLAVSKY I, AMIT R, JAFFAR ALI B M, et al. Objective-type dark-field illumination for scattering from microbeads [J]. Applied Optics, 2001, 40(31): 5650-7.
[77] MICKOLAJCZYK K J, HANCOCK W O. High-resolution single-molecule kinesin assays at khz frame rates [M]//LAVELLE C. Molecular motors: Methods and protocols. New York, NY; Springer New York. 2018: 123-38.
[78] HU M, NOVO C, FUNSTON A, et al. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance [J]. Journal of Materials Chemistry, 2008, 18(17): 1949-60.
[79] JAIN P K, LEE K S, EL-SAYED I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:  Applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-48.
[80] ALI B M J, AMIT R, BRASLAVSKY I, et al. Compaction of single DNA molecules induced by binding of integration host factor (IHF) [J]. Proceedings of the National Academy of Sciences, 2001, 98(19): 10658-63.
[81] DUNN A R, SPUDICH J A. Single-molecule gold-nanoparticle tracking [J]. Cold Spring Harbor Protocols, 2011, 2011(12): pdb. prot066977.
[82] UENO H, NISHIKAWA S, IINO R, et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution [J]. Biophysical Journal, 2010, 98(9): 2014-23.
[83] ENOKI S, IINO R, MORONE N, et al. Label-free single-particle imaging of the influenza virus by objective-type total internal reflection dark-field microscopy [J]. PloS One, 2012, 7(11): e49208.
[84] WIRTZ T, DE CASTRO O, AUDINOT J-N, et al. Imaging and analytics on the helium ion microscope [J]. Annual Review of Analytical Chemistry, 2019, 12(1): 523-43.
[85] OVESNý M, KŘíŽEK P, BORKOVEC J, et al. Thunderstorm: A comprehensive imagej plug-in for PALM and STORM data analysis and super-resolution imaging [J]. Bioinformatics, 2014, 30(16): 2389-90.
[86] Li Z, GANAPATHY S, XU Y, et al. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte [J]. Advanced Energy Materials, 2019, 9(22): 1900237.
[87] DUNDáLEK J, ŠNAJDR I, LIBáNSKý O, et al. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction [J]. Journal of Power Sources, 2017, 372: 221-6.
[88] BOIADJIEVA T, MONEV M, TOMANDL A, et al. Electrochemical studies on Zn deposition and dissolution in sulphate electrolyte [J]. Journal of Solid State Electrochemistry, 2009, 13(5): 671-7.
[89] LIU Y, ZHU Y, CUI Y. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy, 2019, 4(7): 540-50.
[90] CAI Z, WANG J, LU Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry [J]. Angewandte Chemie International Edition, 2022: e202116560.
[91] MORRISSEY P, WELDON P, O’MAHONY M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour [J]. Energy Policy, 2016, 89: 257-70.
[92] VETTER J, NOVáK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1): 269-81.

所在学位评定分委会
化学系
国内图书分类号
TM911.41
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336355
专题理学院_化学系
推荐引用方式
GB/T 7714
毛嘉欣. 锌枝晶成核及生长溶解过程的超分辨成像研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032105-毛嘉欣-化学系.pdf(4265KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[毛嘉欣]的文章
百度学术
百度学术中相似的文章
[毛嘉欣]的文章
必应学术
必应学术中相似的文章
[毛嘉欣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。