[1] IIZUKA M. Diverse and uneven pathways towards transition to low carbon development: The case of solar PV technology in China [J]. Innovation and Development, 2015, 5(2): 241-61.
[2] 郑瑜, 刘涛, 胡耀宇, 等. 基于电化学储能的产业进入方式浅析 [J]. 能源科技, 2020, 18(01): 81-6.
[3] LIU C, Li F, MA L P, et al. Advanced materials for energy storage [J]. Advanced Materials, 2010, 22(8): E28-E62.
[4] 陈明福, 宾雪, 刘峻, 等. “清洁能源综合体”及其发展模式研究 [J]. 能源与环境, 2020, (06): 37-9.
[5] AHOUTOU Y, ILINCA A, ISSA M. Electrochemical cells and storage technologies to increase renewable energy share in cold climate conditions- critical assessment [J]. Energies, 2022, 15(4): 1579.
[6] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future [J]. Materials Today, 2015, 18(5): 252-64.
[7] LEE J S, SUN T K, CAO R, et al. Metal–air batteries with high energy density: Li–air versus Zn–air [J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[8] LIU J, XU C, CHEN Z, et al. Progress in aqueous rechargeable batteries [J]. Green Energy & Environment, 2018, 3(1): 20-41.
[9] GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium−air battery: Promise and challenges [J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2193-203.
[10] MA J, WEN J, ZHU H, et al. Electrochemical performances of Al–0.5Mg–0.1Sn–0.02In alloy in different solutions for Al–air battery [J]. Journal of Power Sources, 2015, 293: 592-8.
[11] ZHANG T, TAO Z, CHEN J. Magnesium–air batteries: From principle to application [J]. Materials Horizons, 2014, 1(2): 196-206.
[12] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1(4): 1-16.
[13] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode [J]. Nature Energy, 2016, 1(10): 16119.
[14] GOLDSTEIN J, BROWN I, KORETZ B. New developments in the electric fuel ltd. Zinc/air system [J]. Journal of Power Sources, 1999, 80(1): 171-9.
[15] PRAKOSO B, MAHBUB M A A, YILMAZ M, et al. Recent progress in extending the cycle-life of secondary Zn-air batteries [J]. ChemNanoMat, 2021, 7(4): 354-67.
[16] FU G, TANG Y, LEE J-M. Recent advances in carbon-based bifunctional oxygen electrocatalysts for Zn−air batteries [J]. ChemElectroChem, 2018, 5(11): 1424-34.
[17] FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc–air batteries: Progress, challenges, and perspectives [J]. Advanced Materials, 2017, 29(7): 1604685.
[18] Li Y, DAI H. Recent advances in zinc–air batteries [J]. Chemical Society Reviews, 2014, 43(15): 5257-75.
[19] 朱明骏, 袁振善, 桑林, 等. 金属/空气电池的研究进展 [J]. 电源技术, 2013, 36(12): 1953-5.
[20] LIU Q, PAN Z, WANG E, et al. Aqueous metal-air batteries: Fundamentals and applications [J]. Energy Storage Materials, 2020, 27: 478-505.
[21] ZHANG J, ZHOU Q, TANG Y, et al. Zinc–air batteries: Are they ready for prime time? [J]. Chemical Science, 2019, 10(39): 8924-9.
[22] MAINAR A R, IRUIN E, COLMENARES L C, et al. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc [J]. Journal of Energy Storage, 2018, 15: 304-28.
[23] FARMANI Z, SEDGHAMIZ M A, RAHIMPOUR M R. Electrolytes for zinc-air batteries [J]. Zinc Batteries, 2020: 187-213.
[24] GREGORY D P. Metal-air batteries [M]. London: Mills and Boon, 1972.
[25] YADAV G G, WEI X, MEEUS M. Chapter 3 - primary zinc-air batteries [M]//ARAI H, GARCHE J, COLMENARES L. Electrochemical power sources: Fundamentals, systems, and applications. Elsevier. 2021: 23-45.
[26] FOROOZAN T, SHARIFI ASL S, SHAHBAZIAN YASSAR R. Electrically rechargeable zinc-oxygen flow battery with high power density [J]. Electrochemistry Communications, 2016, 69: 24-7.
[27] STEIGER J, KRAMER D, MöNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution [J]. Electrochimica Acta, 2014, 136: 529-36.
[28] ZHANG Q, LUAN J, TANG Y, et al. Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries [J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-91.
[29] NELSON WEKER J, TONEY M F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials [J]. Advanced Functional Materials, 2015, 25(11): 1622-37.
[30] WANG C M. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view [J]. Journal of Materials Research, 2015, 30(3): 326-39.
[31] SHI Y, WAN J, LIU G X, et al. Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries [J]. Angewandte Chemie International Edition, 2020, 59(41): 18120-5.
[32] KüHNLE H, KNOBBE E, FIGGEMEIER E. In situ optical investigations of lithium depositions on pristine and aged lithium metal electrodes [J]. Journal of the Electrochemical Society, 2021, 168(2): 020510.
[33] HE Y, WANG H. In-situ neutron techniques for lithium ion and solid-state rechargeable batteries [M]. Handbook of solid state batteries. WORLD SCIENTIFIC. 2015: 51-77.
[34] LACEY S D, WAN J, CRESCE A V W, et al. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes [J]. Nano Letters, 2015, 15(2): 1018-24.
[35] ZHOU X, ZHANG Q, HAO Z, et al. Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy [J]. ACS Applied Materials & Interfaces, 2021, 13(44): 53227-34.
[36] BLANC F, LESKES M, GREY C P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells [J]. Accounts of Chemical Research, 2013, 46(9): 1952-63.
[37] 樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述 [J]. 储能科学与技术, 2019, 8(6): 1040.
[38] SONG Y, HU J, TANG J, et al. Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications [J]. ACS Applied Materials & Interfaces, 2016, 8(46): 32031-40.
[39] YUFIT V, TARIQ F, EASTWOOD D S, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries [J]. Joule, 2019, 3(2): 485-502.
[40] 岳昕阳, 马萃, 包戬, 等. 金属锂负极失效机制及其先进表征技术 [J]. 物理化学学报, 2020, 37(2): 2005012-0.
[41] 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展 [J]. 储能科学与技术, 2019, 8(6): 1050.
[42] TRIPATHI A M, SU W N, HWANG B. In situ analytical techniques for battery interface analysis [J]. Chemical Society Reviews, 2018, 47 3: 736-851.
[43] Li M, RAN L, KNIBBE R. Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope [J]. The Journal of Physical Chemistry Letters, 2021, 12(2): 913-8.
[44] SASAKI Y, YOSHIDA K, KAWASAKI T, et al. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode [J]. Journal of Power Sources, 2021, 481: 228831.
[45] 林家耀. 原位电化学液体透射电镜技术研究锌的沉积 [D]; 厦门大学, 2019.
[46] CHEN B, ZHANG H, XUAN J, et al. Seeing is believing: In situ/operando optical microscopy for probing electrochemical energy systems [J]. Advanced Materials Technologies, 2020, 5(10): 2000555.
[47] YAMANAKA M, SMITH N I, FUJITA K. Introduction to super-resolution microscopy [J]. Microscopy, 2014, 63(3): 177-92.
[48] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-7.
[49] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-2.
[50] BETZIG E, PATTERSON GEORGE H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-5.
[51] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-6.
[52] HUANG B, BABCOCK H, ZHUANG X. Breaking the diffraction barrier: Super-resolution imaging of cells [J]. Cell, 2010, 143(7): 1047-58.
[53] SYDOR A M, CZYMMEK K J, PUCHNER E M, et al. Super-resolution microscopy: From single molecules to supramolecular assemblies [J]. Trends in Cell Biology, 2015, 25(12): 730-48.
[54] Li Q, YI T, WANG X, et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery [J]. Nano Energy, 2019, 63: 103895.
[55] FOROOZAN T, SHARIFI ASL S, SHAHBAZIAN YASSAR R. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques [J]. Journal of Power Sources, 2020, 461: 228135.
[56] ZHANG Z, SAID S, SMITH K, et al. Dendrite suppression by anode polishing in zinc-ion batteries [J]. Journal of Materials Chemistry A, 2021, 9(27): 15355-62.
[57] DIGGLE J, DESPIC A, BOCKRIS J M. The mechanism of the dendritic electrocrystallization of zinc [J]. Journal of the Electrochemical Society, 1969, 116(11): 1503.
[58] OREN Y, LANDAU U. Growth of zinc dendrites in acidic zinc chloride solutions [J]. Electrochimica Acta, 1982, 27(6): 739-48.
[59] CHEN C P, JORNé J. Fractal analysis of zinc electrodeposition [J]. Journal of the Electrochemical Society, 1990, 137(7): 2047.
[60] OTANI T, NAGATA M, FUKUNAKA Y, et al. Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution [J]. Electrochimica Acta, 2016, 206: 366-73.
[61] ZHOU X, LU Y, ZHANG Q, et al. Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system [J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55476-82.
[62] QIU H, DU X, ZHAO J, et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation [J]. Nature communications, 2019, 10(1): 1-12.
[63] JABBARI V, FOROOZAN T, SHAHBAZIAN-YASSAR R. Dendritic Zn deposition in zinc‐metal batteries and mitigation strategies [J]. Advanced Energy and Sustainability Research, 2021, 2(4): 2000082.
[64] WANG K, PEI P, MA Z, et al. Dendrite growth in the recharging process of zinc–air batteries [J]. Journal of Materials Chemistry A, 2015, 3(45): 22648-55.
[65] WANG R Y, KIRK D W, ZHANG G X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions [J]. Journal of the Electrochemical Society, 2006, 153(5): C357.
[66] LU W, XIE C, ZHANG H, et al. Inhibition of zinc dendrite growth in zinc‐based batteries [J]. ChemSusChem, 2018, 11(23): 3996-4006.
[67] BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by peg-200 additive [J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D23.
[68] BANIK S J, AKOLKAR R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive [J]. Electrochimica Acta, 2015, 179: 475-81.
[69] LIN M H, HUANG C J, CHENG P H, et al. Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: Mechanism studies of dendrite suppression and corrosion inhibition [J]. Journal of Materials Chemistry A, 2020, 8(39): 20637-49.
[70] BAYAGUUD A, LUO X, FU Y, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries [J]. ACS Energy Letters, 2020, 5(9): 3012-20.
[71] LEE S, KANG I, KIM J, et al. Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities [J]. Journal of Power Sources, 2020, 472: 228334.
[72] LU Q, LIU C, DU Y, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16869-75.
[73] LEE B S, CUI S, XING X, et al. Dendrite suppression membranes for rechargeable zinc batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38928-35.
[74] KANOUFI F. Electrochemistry and optical microscopy [J]. Encyclopedia of Electrochemistry, 2021: 1-80.
[75] BURGHARDT T P, HIPP A D, AJTAI K. Around-the-objective total internal reflection fluorescence microscopy [J]. Applied Optics, 2009, 48(32): 6120-31.
[76] BRASLAVSKY I, AMIT R, JAFFAR ALI B M, et al. Objective-type dark-field illumination for scattering from microbeads [J]. Applied Optics, 2001, 40(31): 5650-7.
[77] MICKOLAJCZYK K J, HANCOCK W O. High-resolution single-molecule kinesin assays at khz frame rates [M]//LAVELLE C. Molecular motors: Methods and protocols. New York, NY; Springer New York. 2018: 123-38.
[78] HU M, NOVO C, FUNSTON A, et al. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance [J]. Journal of Materials Chemistry, 2008, 18(17): 1949-60.
[79] JAIN P K, LEE K S, EL-SAYED I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-48.
[80] ALI B M J, AMIT R, BRASLAVSKY I, et al. Compaction of single DNA molecules induced by binding of integration host factor (IHF) [J]. Proceedings of the National Academy of Sciences, 2001, 98(19): 10658-63.
[81] DUNN A R, SPUDICH J A. Single-molecule gold-nanoparticle tracking [J]. Cold Spring Harbor Protocols, 2011, 2011(12): pdb. prot066977.
[82] UENO H, NISHIKAWA S, IINO R, et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution [J]. Biophysical Journal, 2010, 98(9): 2014-23.
[83] ENOKI S, IINO R, MORONE N, et al. Label-free single-particle imaging of the influenza virus by objective-type total internal reflection dark-field microscopy [J]. PloS One, 2012, 7(11): e49208.
[84] WIRTZ T, DE CASTRO O, AUDINOT J-N, et al. Imaging and analytics on the helium ion microscope [J]. Annual Review of Analytical Chemistry, 2019, 12(1): 523-43.
[85] OVESNý M, KŘíŽEK P, BORKOVEC J, et al. Thunderstorm: A comprehensive imagej plug-in for PALM and STORM data analysis and super-resolution imaging [J]. Bioinformatics, 2014, 30(16): 2389-90.
[86] Li Z, GANAPATHY S, XU Y, et al. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte [J]. Advanced Energy Materials, 2019, 9(22): 1900237.
[87] DUNDáLEK J, ŠNAJDR I, LIBáNSKý O, et al. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction [J]. Journal of Power Sources, 2017, 372: 221-6.
[88] BOIADJIEVA T, MONEV M, TOMANDL A, et al. Electrochemical studies on Zn deposition and dissolution in sulphate electrolyte [J]. Journal of Solid State Electrochemistry, 2009, 13(5): 671-7.
[89] LIU Y, ZHU Y, CUI Y. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy, 2019, 4(7): 540-50.
[90] CAI Z, WANG J, LU Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry [J]. Angewandte Chemie International Edition, 2022: e202116560.
[91] MORRISSEY P, WELDON P, O’MAHONY M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour [J]. Energy Policy, 2016, 89: 257-70.
[92] VETTER J, NOVáK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1): 269-81.
修改评论