中文版 | English
题名

基于三氰合铁的磁双稳态材料的合成与表征

其他题名
SYNTHESISAND CHARACTERIZATIONOF MAGNETIC BISTABLE MATERIALS BASED ON TRICYANOFERRIC
姓名
姓名拼音
LI Yujie
学号
12032110
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
张元竹
导师单位
化学系
外机构导师
吴明
外机构导师单位
赛澔(上海)仪器有限公司
论文答辩日期
2022-05-13
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,具有金属间电子转移特性的氰根桥连配合物因表现出对温度、磁场、压强及光等外界因素的双稳态响应成为分子磁学及磁性材料领域一个重要的研究热点。基于其简单易行的构筑块策略和丰富的调控手段,大量的研究结果表明其电子转移特性(比如发生温度、转变速度及热滞回线等)与分子间作用力、客体分子、抗衡阴离子、分子结构畸变、卤键等息息相关。

本论文主要基于不同的多吡唑三氰合铁构筑基元,与过渡金属离子(Co(II)Fe(II))及螯合配体dptrz2, 9-二甲基-4, 7-二苯基-1, 10-菲咯啉(BCP)通过自组装构筑了20例不同的氰根桥连配合物(1-20),研究了其结构、磁性及两者的关系,结果如下:

首先,基于位阻较大的BCP配体构筑了配合物1-7,其中配合物2-5具有氰根桥连的[FeIII2CoII2]平面四方结构,配合物167均为平面六核[FeIII4MII2]结构(M = Co, Fe, Ni)。值得注意的是,所有配合物中二价金属离子均采用五配位变形四棱锥构型,直流和交流磁化率研究表明均未表现出单分子磁体的行为。其中配合物3100-150 K之间表现出类似电子转移的磁转变行为。

其次,基于配体dptrz构筑了氰根桥连Fe-Co配合物8-17。其中配合物111214[FeIII2CoII]三核结构,13[FeIII2CoII4]六核结构,而其他均为[Fe2Co2]平面四方结构。其中配合物89都表现出典型的电子转移行为,其电子转移温度分别在350 K140 K。配合物1516与配合物9具有相同的分子骨架而不同的抗衡阴离子,研究发现其电子转移温度分别移向210 K125 K,说明抗衡阴离子对其电子转移行为具有显著的作用。同样,配合物17电子转移温度为370 K,略高于配合物8;有趣的是,配合物17在脱溶剂后表现出显著的负热膨胀效应。

另外,还得到一系列基于三氰合铁构筑基元的二维磁有序配合物,其中配合物18为铁磁体,而配合物1920为亚铁磁体。

其他摘要

Recently, cyanide-bridged complexes with intermetallic electron transfer properties have been become an important research hotspot in the field of molecular magnetism and magnetic materials because of their bistable responses to external factors such as temperature, magnetic field, pressure, and light. Based on its simple and feasible building block strategy and abundant control methods, a large number of research results have shown that its electron transfer characteristics (such as occurrence temperature, transition speed and thermal hysteresis loop, etc.) are closely related to intermolecular forces, guest molecules, counter anions, molecular structure distortion, halogen bonds, and so on.

In this paper, 20 different cyanide bridged complexes (1-20) were constructed by transition metal ions (Co(II), Ni(II) or Fe(II)), chelating ligands (dptrz or BCP), and different polypyrazole tricyanoferric building blocks via self-assembly. Their structures, magnetism anf the relationship between the two have been studied, and the results are as follows:

Firstly, complexes 1-7 are constructed by ligand BCP which has a large steric hindrance. Complexes 2-5 have a cyanide-brdged [FeIII2CoII2] planar tetragonal structure, and complexed 1, 6 and 7 are all planar hexanuclear [FeIII4MII2] structures. Complexes 2 and 5 have a tendency of electron transfer at very low temperature (less than 30 K). It is worth noting that the divalent metal ions in all complexes adopt the five-coordinate deformed quadrangular pyramid configuration. Among them, complex 3 exhibits an electron transfer-like magnetic transition behavior between 100 and 150 K.

Secondly, cyanide-bridged Fe-Co complexes 8-17 were constructed based on the ligand dptrz. Complexes 11, 12 and 14 are [FeIII2CoII] trinuclear molecules, 13 is [FeIII2CoII4] hexanuclear molecules, and the others are [Fe2Co2] planar tetragonal molecules. Among them, both complexes 8 and 9 exhibit typical electron transfer behavior, and their electron transfer temperatures are 350 K and 140 K, respectively. Compared with complex 9, complexes 15 and 16 have the same molecular skeleton but different counter anions. It’s found that their electron transfer temperatures shift to 210 and 125 K, respectively, indicating that the counter anions have a significant effect on their electron transfer behavior. Liskewise, the electron transfer temperature of complex 17 is 370 K, which is slightly higher than that of complex 8; interestingly, it exhibits a significant negative thermal expansion effect after desolvation.

In addition, we also obtained a series of two-dimensional magnetically ordered complexes based on the tricyanoferrate building block, in which complex 18 is a ferromagnet, while complexes 19 and 20 are ferrimagnets.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] SATO O, TAO J, ZHANG Y Z. Control of Magnetic Properties through External Stimuli[J]. Angewandte Chemie International Edition, 2007, 46(13): 2152-2187.
[2] GOODWIN C A, ORTU F, RETA D, et al. Molecular Magnetic Hysteresis at 60 Kelvin in Dysprosocenium[J]. Nature, 2017, 548: 439-442.
[3] GUO F S, DAY B M, CHEN Y C, et al. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet[J]. Science, 2018, 362: 1400-1403.
[4] CHEN Y C, LIU J L, UNGUR L, et al. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets[J]. Journal of the American Chemical Society, 2016, 138(8): 2829-2837.
[5] ISHIKAWA N, SUGITA M, ISHIKAWA T, et al. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level [J]. Journal of the American Chemical Society, 2003, 125: 8694-8695.
[6] VINCENT R, KLYATSKAYA S, et al. Electronic read-out of a single nuclear spin using a molecular spin transistor[J]. Nature, 2012.
[7] GÜTLICH P, GASPAR A B, GARCIA Y. Spin State Switching in Iron Coordination Compounds[J]. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391.
[8] DUNBAR, K. R., ACHIM, C. & SHATRUK, M. Spin-Crossover Materials: Properties and Applications[M]. 2013.
[9] BOUSSEKSOU A, G MOLNÁR, SALMON L, et al. Molecular spin crossover phenomenon: recent achievements and prospects[J]. Chemical Society Reviews, 2011, 40(6):3313-3335.
[10] TEZGEREVSKA T, ALLEY K G, BOSKOVIC C. Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands[J]. Coordination Chemistry Reviews, 2014, 268(jun.):23-40.
[11] HILFIGER M, CHEN M, BRINZARI T, et al. An Unprecedented Charge Transfer Induced Spin Transition in an Fe–Os Cluster[J]. Angewandte Chemie International Edition, 2009.
[12] MENG Y-S, SATO O, LIU T. Manipulating Metal-to-Metal Charge Transfer for Materials with Switchable Functionality[J]. Angewandte Chemie International Edition, 2018, 57: 12216-12226.
[13] MORITA Y, MURATA T, NAKASUJI K. Cooperation of Hydrogen-Bond and Charge-Transfer Interactions in Molecular Complexes in the Solid State[J]. Bulletin of the Chemical Society of Japan, 2013, 86(2):183-197.
[14] IRIE M, FUKAMINATO T, MATSUDA K, et al. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators[J]. Chemical Reviews, 2014, 114(24).
[15] NATH N K, PANDA M K, SAHOO S C, et al. Thermally induced and photoinduced mechanical effects in molecular single crystals—a revival[J]. CrystEngComm, 2014, 16(10):1850.
[16] ZHANG W, XIONG R G. Ferroelectric metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):1163-95.
[17] WANG C F, LI R F, CHEN X Y, et al. Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes[J]. Angewandte Chemie International Edition, 2015.
[18] SORAI M. Calorimetric investigations of phase transitions occurring in molecule-based materials in which electrons are directly involved[J]. Bulletin of the Chemical Society of Japan, 2001, 74(12):2223-2253.
[19] GROSJEAN A, P NÉGRIER, BORDET P, et al. Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects[J]. European Journal of Inorganic Chemistry, 2013, 2013(5-6):796–802.
[20] KAHN O, MARTINEZ C J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices[J]. Science, 1998, 279(5347):44-53.
[21] BONHOMMEAU S, GUILLON T, DR L, et al. Photoswitching of the Dielectric Constant of the Spin-Crossover Complex [Fe(L)(CN)2]H2O[J]. Angewandte Chemie, 2010, 118(10):1655-1659.
[22] HAYAMI S, GU Z Z, SHIRO M, et al. First Observation of Light-Induced Excited Spin State Trapping for an Iron(III) Complex[J]. Journal of the American Chemical Society, 2000, 122(29):7126-7127.
[23] OHKOSHI S I, IMOTO K, TSUNOBUCHI Y, et al. Light-induced spin-crossover magnet[J]. Nature Chemistry, 2011, 3(7):564-569.
[24] LINARES J, CODJOVI E, GARCIA Y. Pressure and Temperature Spin Crossover Sensors with Optical Detection[J]. Sensors (Basel, Switzerland), 2012, 12(4).
[25] GATTESCHI D, SESSOLI R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials[J]. ChemInform, 2003.
[26] PAROIS P, MOGGACH S A, SANCHEZ-BENITEZ J, et al. Pressure-induced Jahn-Teller switching in a Mn12 nanomagnet[J]. Chemical Communications, 2010, 46(11):1881-3.
[27] MORIMOTO M, MIYASAKA H, YAMASHITA M, et al. Coordination Assemblies of [Mn4] Single-Molecule Magnets Linked by Photochromic Ligands: Photochemical Control of the Magnetic Properties[J]. Journal of the American Chemical Society, 2009.
[28] NIHEI, M. A Light-Induced Phase Exhibiting Slow Magnetic Relaxation in a Cyanide-Bridged [Fe4Co2] Complex[J]. Angewandte Chemie International Edition, 2012, 51(26):6536-6536.
[29] FENG X, MATHONIERE C, JEON I R, et al. Tristability in a Light-Actuated Single-Molecule Magnet[J]. Journal of the American Chemical Society, 2013, 135(42):15880-15884.
[30] LIU T, ZHENG H, KANG S, et al. A light-induced spin crossover actuated single-chain magnet[J]. Nature Communications, 2013, 4, 2826.
[31] SHEPHERD H J, IA GURAL’SKIY, QUINTERO C M, et al. Molecular actuators driven by cooperative spin-state switching[J]. Nature Communications, 2013, 4, 3607.
[32] ZHAO X H, SHAO D, CHEN J T, et al. A trinuclear {FeIII2FeII complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis[J]. Science China Chemistry, 2022, 65(3):532-538.
[33] DENG Y F, WANG Y N, ZHAO X H, et al. Desolvation–solvation-induced reversible on–off switching of two memory channels in a Cobalt(II) coordination polymer: overlay of spin crossover and structural phase transition[J]. CCS Chemistry, 2021, 3:3277-3288.
[34] TAKAHASHI K, CUI H B, OKANO Y, et al. Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [Fe(III)(qnal)2][Pd(dmit)2]5.acetone[J]. Journal of the American Chemical Society, 2008, 130(21):6688-6689.
[35] HOA, PHAN H, SHERMANE, et al. Photomagnetic Response in Highly Conductive Iron(II) Spin-Crossover Complexes with TCNQ Radicals[J]. Angewandte Chemie International Edition, 2015(54):823–827
[36] HICKS, ROBIN G. Switchable materials: A new spin on bistability[J]. Nature Chemistry, 2011, 3(3):189-191.
[37] FUJITA W, AWAGA K. Room-Temperature Magnetic Bistability in Organic Radical Crystals[J]. Science, 1999, 286(5438):261-262.
[38] PHAN H, LEKIN K, WINTER S M, et al. Photoinduced solid state conversion of a radical σ-dimer to a π-radical pair[J]. Journal of the American Chemical Society, 2013, 135(42):15674.
[39] ISHI DA N T. Organic Two-Step Spin-Transition-Like Behavior in a Linear S = 1 Array: 3’-Methylbiphenyl-3,5-diyl Bis(tert-butylnitroxide) and Related Compounds[J]. Journal of the American Chemical Society, 2010, 132(28):9598-9.
[40] HORIUCHI S, KUMAI R, OKIMOTO Y, et al. Chemical approach to neutral–ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes[J]. Chemical Physics, 2006, 325(1):78-91.
[41] KOBAYASHI K, HORIUCHI S, KUMAI R, et al. Electronic Ferroelectricity in a Molecular Crystal with Large Polarization Directing Antiparallel to Ionic Displacement[J]. Physical Review Letters, 2012, 108(23):237601.
[42] HORIUCHI S, KOBAYASHI K, KUMAI R, et al. Ionic versus Electronic Ferroelectricity in Donor–Acceptor Molecular Sequences[J]. Chemistry Letters, 2014, 43(1):26-35. quences. Chem. Lett. 43, 26–35 (2014).
[43] YAMAMOTO, K. Strong Optical Nonlinearity and its Ultrafast Response Associated with Electron Ferroelectricity in an Organic Conductor (Condensed matter: electronic structure and electrical, magnetic, and optical properties) [J]. Journal of the Physical Society of Japan, 2008, 77, 493201.
[44] CHORAZY S, PODGAJNY R, NOGAS W, et al. Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster[J]. Chemical Communications, 2014, 50(26):3484-3487.
[45] ITOI M, ONO Y, KOJIMA N, et al. Charge‐Transfer Phase Transition and Ferromagnetism of Iron Mixed‐Valence Complexes (n-CnH2n+1)4N[FeIIFeIII(dto)3] (n = 3-6; dto = C2O2S2) [J]. European Journal of Inorganic Chemistry, 2006:1198-1207.
[46] OHKOSHI, S. I, TOKORO, H, et al. Photomagnetism in Cyano-Bridged Bimetal Assemblies[J]. Accounts of Chemical Research, 2012, 45(10):1749-1758.
[47] FEDUSHKIN I L, MASLOVA O V, MOROZOV A G, et al. Genuine Redox Isomerism in a Rare‐Earth‐Metal Complex[J]. Angewandte Chemie, 2012, 51(42):10584-10587.
[48] AVENDANO, C. Temperature and light induced bistability in a Co3[Os(CN)6]2·6 H2O Prussian blue analog[J]. Journal of the American Chemical Society, 2010, 132(38):13123-13125.
[49] SATO O, IYODA T, FUJISHIMA A, et al. Photoinduced Magnetization of a Cobalt-Iron Cyanide[J]. Science, 1996, 272(5262):704-705.
[50] HOSHINO N, IIJIMA F, NEWTON G N, t al. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nature Chemistry, 2012, 4(11):921-926.
[51] NIHEI M, SEKINE Y, SUGANAMI N, et al. Controlled Intramolecular Electron Transfers in Cyanide-Bridged Molecular Squares by Chemical Modifications and External Stimuli[J]. Journal of the American Chemical Society, 2011, 133(10):3592-600.
[52] SIRETANU D, LI D F, BUISSON L, et al. Controlling Thermally Induced Electron Transfer in Cyano-Bridged Molecular Squares from Solid State to Solution [J]. Chemistry - A European Journal, 2011, 17: 11704-11708.
[53] JIAO, C Q, MENG Y S, YU Y, JIANG, et al. Effect of Intermolecular Interactions on Metal-to-Metal Charge Transfer: A Combined Experimental and Theoretical Investigation [J]. Angewandte Chemie International Edition, 2019, 58: 17009-17015.
[54] NIHEI M, YANAI Y, NATKE D, et al. Solid State Hydrogen Bond Alterations in a Complex with Bifunctional Hydrogen Bonding Donors [J]. Chemistry - A European Journal, 2019, 25: 7449-7452.
[55] ZHAO L, MENG Y S, LIU Q, et al. Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover[J]. Nature Chemistry, 2021:1-7.
[56] WEN W, Y MENG, JIAO C, et al. A Mixed‐Valence {Fe13Cluster Exhibiting Metal-to-Metal Charge-Transfer-Switched Spin Crossover[J]. Angewandte Chemie International Edition, 2020, 59(38):16393-16397.
[57] PONETI G, DR M M, DR L S, et al. Soft-X-ray-Induced Redox Isomerism in a Cobalt Dioxolene Complex[J]. Angewandte Chemie, 2010, 49(11):1954-1957.
[58] ZHANG Y Z, LI D F, RODOLPHE CLÉRAC, et al. Reversible Thermally and Photoinduced Electron Transfer in a Cyano‐Bridged {Fe2Co2 Square Complex[J]. Angewandte Chemie International Edition, 2010, 49(22):3752-3756.
[59] ZHANG Y Z, FERKO P, SIRETANU D, et al. Thermochromic and Photoresponsive Cyanometalate Fe/Co Squares: Toward Control of the Electron Transfer Temperature[J]. Journal of the American Chemical Society, 2014, 136(48):16854-16864.
[60] LIU S, DENG Y F, CHEN Z Y, et al. Secondary Metal Coordination Using a Tetranuclear Complex as Ligand Leading to Hexanuclear Complexes with Enhanced Thermal Barriers for Electron Transfer[J]. CCS Chemistry, 2020, 2:2530-2538.
[61] MENG L Y, DENG Y F, ZHANG Y Z, Anion-Dependent Electron Transfer in the Cyanide-Bridged [Fe2Co2] Capsules[J]. Inorganic Chemistry, 2021, 60:14330-14335.
[62] MENG L Y, DENG Y F, LIU S H, et al. A smart post-synthetic route towards [Fe2Co2] molecular capsules with electron transfer and bidirectional switching behaviors[J]. Science China Chemistry, 2021, 64(8):1340-1348.
[63] YOU M, GAN D X, DENG Y F, et al. Thermally induced reversible metal-to-metal charge transfer in mixed-valence {FeIII4FeII4} cubes[J]. CCS Chemistry, 2021,3:2593-2600.

所在学位评定分委会
化学系
国内图书分类号
O641
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336356
专题理学院_化学系
推荐引用方式
GB/T 7714
李宇杰. 基于三氰合铁的磁双稳态材料的合成与表征[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032110-李宇杰-化学系.pdf(16513KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李宇杰]的文章
百度学术
百度学术中相似的文章
[李宇杰]的文章
必应学术
必应学术中相似的文章
[李宇杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。