[1] SATO O, TAO J, ZHANG Y Z. Control of Magnetic Properties through External Stimuli[J]. Angewandte Chemie International Edition, 2007, 46(13): 2152-2187.
[2] GOODWIN C A, ORTU F, RETA D, et al. Molecular Magnetic Hysteresis at 60 Kelvin in Dysprosocenium[J]. Nature, 2017, 548: 439-442.
[3] GUO F S, DAY B M, CHEN Y C, et al. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet[J]. Science, 2018, 362: 1400-1403.
[4] CHEN Y C, LIU J L, UNGUR L, et al. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets[J]. Journal of the American Chemical Society, 2016, 138(8): 2829-2837.
[5] ISHIKAWA N, SUGITA M, ISHIKAWA T, et al. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level [J]. Journal of the American Chemical Society, 2003, 125: 8694-8695.
[6] VINCENT R, KLYATSKAYA S, et al. Electronic read-out of a single nuclear spin using a molecular spin transistor[J]. Nature, 2012.
[7] GÜTLICH P, GASPAR A B, GARCIA Y. Spin State Switching in Iron Coordination Compounds[J]. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391.
[8] DUNBAR, K. R., ACHIM, C. & SHATRUK, M. Spin-Crossover Materials: Properties and Applications[M]. 2013.
[9] BOUSSEKSOU A, G MOLNÁR, SALMON L, et al. Molecular spin crossover phenomenon: recent achievements and prospects[J]. Chemical Society Reviews, 2011, 40(6):3313-3335.
[10] TEZGEREVSKA T, ALLEY K G, BOSKOVIC C. Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands[J]. Coordination Chemistry Reviews, 2014, 268(jun.):23-40.
[11] HILFIGER M, CHEN M, BRINZARI T, et al. An Unprecedented Charge Transfer Induced Spin Transition in an Fe–Os Cluster[J]. Angewandte Chemie International Edition, 2009.
[12] MENG Y-S, SATO O, LIU T. Manipulating Metal-to-Metal Charge Transfer for Materials with Switchable Functionality[J]. Angewandte Chemie International Edition, 2018, 57: 12216-12226.
[13] MORITA Y, MURATA T, NAKASUJI K. Cooperation of Hydrogen-Bond and Charge-Transfer Interactions in Molecular Complexes in the Solid State[J]. Bulletin of the Chemical Society of Japan, 2013, 86(2):183-197.
[14] IRIE M, FUKAMINATO T, MATSUDA K, et al. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators[J]. Chemical Reviews, 2014, 114(24).
[15] NATH N K, PANDA M K, SAHOO S C, et al. Thermally induced and photoinduced mechanical effects in molecular single crystals—a revival[J]. CrystEngComm, 2014, 16(10):1850.
[16] ZHANG W, XIONG R G. Ferroelectric metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):1163-95.
[17] WANG C F, LI R F, CHEN X Y, et al. Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes[J]. Angewandte Chemie International Edition, 2015.
[18] SORAI M. Calorimetric investigations of phase transitions occurring in molecule-based materials in which electrons are directly involved[J]. Bulletin of the Chemical Society of Japan, 2001, 74(12):2223-2253.
[19] GROSJEAN A, P NÉGRIER, BORDET P, et al. Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects[J]. European Journal of Inorganic Chemistry, 2013, 2013(5-6):796–802.
[20] KAHN O, MARTINEZ C J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices[J]. Science, 1998, 279(5347):44-53.
[21] BONHOMMEAU S, GUILLON T, DR L, et al. Photoswitching of the Dielectric Constant of the Spin-Crossover Complex [Fe(L)(CN)2]H2O[J]. Angewandte Chemie, 2010, 118(10):1655-1659.
[22] HAYAMI S, GU Z Z, SHIRO M, et al. First Observation of Light-Induced Excited Spin State Trapping for an Iron(III) Complex[J]. Journal of the American Chemical Society, 2000, 122(29):7126-7127.
[23] OHKOSHI S I, IMOTO K, TSUNOBUCHI Y, et al. Light-induced spin-crossover magnet[J]. Nature Chemistry, 2011, 3(7):564-569.
[24] LINARES J, CODJOVI E, GARCIA Y. Pressure and Temperature Spin Crossover Sensors with Optical Detection[J]. Sensors (Basel, Switzerland), 2012, 12(4).
[25] GATTESCHI D, SESSOLI R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials[J]. ChemInform, 2003.
[26] PAROIS P, MOGGACH S A, SANCHEZ-BENITEZ J, et al. Pressure-induced Jahn-Teller switching in a Mn12 nanomagnet[J]. Chemical Communications, 2010, 46(11):1881-3.
[27] MORIMOTO M, MIYASAKA H, YAMASHITA M, et al. Coordination Assemblies of [Mn4] Single-Molecule Magnets Linked by Photochromic Ligands: Photochemical Control of the Magnetic Properties[J]. Journal of the American Chemical Society, 2009.
[28] NIHEI, M. A Light-Induced Phase Exhibiting Slow Magnetic Relaxation in a Cyanide-Bridged [Fe4Co2] Complex[J]. Angewandte Chemie International Edition, 2012, 51(26):6536-6536.
[29] FENG X, MATHONIERE C, JEON I R, et al. Tristability in a Light-Actuated Single-Molecule Magnet[J]. Journal of the American Chemical Society, 2013, 135(42):15880-15884.
[30] LIU T, ZHENG H, KANG S, et al. A light-induced spin crossover actuated single-chain magnet[J]. Nature Communications, 2013, 4, 2826.
[31] SHEPHERD H J, IA GURAL’SKIY, QUINTERO C M, et al. Molecular actuators driven by cooperative spin-state switching[J]. Nature Communications, 2013, 4, 3607.
[32] ZHAO X H, SHAO D, CHEN J T, et al. A trinuclear {FeIII2FeII complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis[J]. Science China Chemistry, 2022, 65(3):532-538.
[33] DENG Y F, WANG Y N, ZHAO X H, et al. Desolvation–solvation-induced reversible on–off switching of two memory channels in a Cobalt(II) coordination polymer: overlay of spin crossover and structural phase transition[J]. CCS Chemistry, 2021, 3:3277-3288.
[34] TAKAHASHI K, CUI H B, OKANO Y, et al. Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [Fe(III)(qnal)2][Pd(dmit)2]5.acetone[J]. Journal of the American Chemical Society, 2008, 130(21):6688-6689.
[35] HOA, PHAN H, SHERMANE, et al. Photomagnetic Response in Highly Conductive Iron(II) Spin-Crossover Complexes with TCNQ Radicals[J]. Angewandte Chemie International Edition, 2015(54):823–827
[36] HICKS, ROBIN G. Switchable materials: A new spin on bistability[J]. Nature Chemistry, 2011, 3(3):189-191.
[37] FUJITA W, AWAGA K. Room-Temperature Magnetic Bistability in Organic Radical Crystals[J]. Science, 1999, 286(5438):261-262.
[38] PHAN H, LEKIN K, WINTER S M, et al. Photoinduced solid state conversion of a radical σ-dimer to a π-radical pair[J]. Journal of the American Chemical Society, 2013, 135(42):15674.
[39] ISHI DA N T. Organic Two-Step Spin-Transition-Like Behavior in a Linear S = 1 Array: 3’-Methylbiphenyl-3,5-diyl Bis(tert-butylnitroxide) and Related Compounds[J]. Journal of the American Chemical Society, 2010, 132(28):9598-9.
[40] HORIUCHI S, KUMAI R, OKIMOTO Y, et al. Chemical approach to neutral–ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes[J]. Chemical Physics, 2006, 325(1):78-91.
[41] KOBAYASHI K, HORIUCHI S, KUMAI R, et al. Electronic Ferroelectricity in a Molecular Crystal with Large Polarization Directing Antiparallel to Ionic Displacement[J]. Physical Review Letters, 2012, 108(23):237601.
[42] HORIUCHI S, KOBAYASHI K, KUMAI R, et al. Ionic versus Electronic Ferroelectricity in Donor–Acceptor Molecular Sequences[J]. Chemistry Letters, 2014, 43(1):26-35. quences. Chem. Lett. 43, 26–35 (2014).
[43] YAMAMOTO, K. Strong Optical Nonlinearity and its Ultrafast Response Associated with Electron Ferroelectricity in an Organic Conductor (Condensed matter: electronic structure and electrical, magnetic, and optical properties) [J]. Journal of the Physical Society of Japan, 2008, 77, 493201.
[44] CHORAZY S, PODGAJNY R, NOGAS W, et al. Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster[J]. Chemical Communications, 2014, 50(26):3484-3487.
[45] ITOI M, ONO Y, KOJIMA N, et al. Charge‐Transfer Phase Transition and Ferromagnetism of Iron Mixed‐Valence Complexes (n-CnH2n+1)4N[FeIIFeIII(dto)3] (n = 3-6; dto = C2O2S2) [J]. European Journal of Inorganic Chemistry, 2006:1198-1207.
[46] OHKOSHI, S. I, TOKORO, H, et al. Photomagnetism in Cyano-Bridged Bimetal Assemblies[J]. Accounts of Chemical Research, 2012, 45(10):1749-1758.
[47] FEDUSHKIN I L, MASLOVA O V, MOROZOV A G, et al. Genuine Redox Isomerism in a Rare‐Earth‐Metal Complex[J]. Angewandte Chemie, 2012, 51(42):10584-10587.
[48] AVENDANO, C. Temperature and light induced bistability in a Co3[Os(CN)6]2·6 H2O Prussian blue analog[J]. Journal of the American Chemical Society, 2010, 132(38):13123-13125.
[49] SATO O, IYODA T, FUJISHIMA A, et al. Photoinduced Magnetization of a Cobalt-Iron Cyanide[J]. Science, 1996, 272(5262):704-705.
[50] HOSHINO N, IIJIMA F, NEWTON G N, t al. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nature Chemistry, 2012, 4(11):921-926.
[51] NIHEI M, SEKINE Y, SUGANAMI N, et al. Controlled Intramolecular Electron Transfers in Cyanide-Bridged Molecular Squares by Chemical Modifications and External Stimuli[J]. Journal of the American Chemical Society, 2011, 133(10):3592-600.
[52] SIRETANU D, LI D F, BUISSON L, et al. Controlling Thermally Induced Electron Transfer in Cyano-Bridged Molecular Squares from Solid State to Solution [J]. Chemistry - A European Journal, 2011, 17: 11704-11708.
[53] JIAO, C Q, MENG Y S, YU Y, JIANG, et al. Effect of Intermolecular Interactions on Metal-to-Metal Charge Transfer: A Combined Experimental and Theoretical Investigation [J]. Angewandte Chemie International Edition, 2019, 58: 17009-17015.
[54] NIHEI M, YANAI Y, NATKE D, et al. Solid State Hydrogen Bond Alterations in a Complex with Bifunctional Hydrogen Bonding Donors [J]. Chemistry - A European Journal, 2019, 25: 7449-7452.
[55] ZHAO L, MENG Y S, LIU Q, et al. Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover[J]. Nature Chemistry, 2021:1-7.
[56] WEN W, Y MENG, JIAO C, et al. A Mixed‐Valence {Fe13Cluster Exhibiting Metal-to-Metal Charge-Transfer-Switched Spin Crossover[J]. Angewandte Chemie International Edition, 2020, 59(38):16393-16397.
[57] PONETI G, DR M M, DR L S, et al. Soft-X-ray-Induced Redox Isomerism in a Cobalt Dioxolene Complex[J]. Angewandte Chemie, 2010, 49(11):1954-1957.
[58] ZHANG Y Z, LI D F, RODOLPHE CLÉRAC, et al. Reversible Thermally and Photoinduced Electron Transfer in a Cyano‐Bridged {Fe2Co2 Square Complex[J]. Angewandte Chemie International Edition, 2010, 49(22):3752-3756.
[59] ZHANG Y Z, FERKO P, SIRETANU D, et al. Thermochromic and Photoresponsive Cyanometalate Fe/Co Squares: Toward Control of the Electron Transfer Temperature[J]. Journal of the American Chemical Society, 2014, 136(48):16854-16864.
[60] LIU S, DENG Y F, CHEN Z Y, et al. Secondary Metal Coordination Using a Tetranuclear Complex as Ligand Leading to Hexanuclear Complexes with Enhanced Thermal Barriers for Electron Transfer[J]. CCS Chemistry, 2020, 2:2530-2538.
[61] MENG L Y, DENG Y F, ZHANG Y Z, Anion-Dependent Electron Transfer in the Cyanide-Bridged [Fe2Co2] Capsules[J]. Inorganic Chemistry, 2021, 60:14330-14335.
[62] MENG L Y, DENG Y F, LIU S H, et al. A smart post-synthetic route towards [Fe2Co2] molecular capsules with electron transfer and bidirectional switching behaviors[J]. Science China Chemistry, 2021, 64(8):1340-1348.
[63] YOU M, GAN D X, DENG Y F, et al. Thermally induced reversible metal-to-metal charge transfer in mixed-valence {FeIII4FeII4} cubes[J]. CCS Chemistry, 2021,3:2593-2600.
修改评论