[1] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors[J]. Chemical Reviews, 2004, 104(10): 4245-4270.
[2] FU X, WAN C, HUANG Y, et al. Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media[J]. Advanced Functional Materials, 2022, 32(11): 2106401.
[3] YANG X, WANG Y, WANG X, et al. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles[J]. Angewandte Chemie International Edition, 2021, 60(50): 26177-26183.
[4] TANG M, CHEN W, LUO S, et al. Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis[J]. Journal of Materials Chemistry A, 2021, 9(15): 9602-9608.
[5] CHEN W, LUO S, SUN M, et al. Hexagonal PtBi intermetallic inlaid with sub-monolayer Pb oxyhydroxide boosts methanol oxidation[J]. Small, 2022: e2107803.
[6] SHEN T, CHEN S, ZENG R, et al. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic[J]. ACS Catalysis, 2020, 10(17): 9977-9985.
[7] WANG Y, CAO L, LIBRETTO N J, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(42): 16635-16642.
[8] LIU H L, NOSHEEN F, WANG X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property[J]. Chemical Society Reviews, 2015, 44(10): 3056-3078.
[9] CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343.
[10] HANNAGAN R T, GIANNAKAKIS G, FLYTZANI-STEPHANOPOULOS M, et al. Single-atom alloy catalysis[J]. Chemical Reviews, 2020, 120(21): 12044-12088.
[11] WANG Y, SU H, HE Y, et al. Advanced electrocatalysts with single-metal-atom active sites[J]. Chemical Reviews, 2020, 120(21): 12217-12314.
[12] SCHMIDT-ROHR K. How batteries store and release energy: Explaining basic electrochemistry[J]. Journal of Chemical Education, 2018, 95(10): 1801-1810.
[13] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
[14] KAKATI N, MAITI J, LEE S H, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru[J]. Chemical Reviews, 2014, 114(24): 12397-12429.
[15] CROPPER M A J, GEIGER S, JOLLIE D M. Fuel cells: A survey of current developments[J]. Journal of Power Sources, 2004, 131(1): 57-61.
[16] WANG C, BAI S, XIONG Y. Recent advances in surface and interface engineering for electrocatalysis[J]. Chinese Journal of Catalysis, 2015, 36(9): 1476-1493.
[17] JIANG K, ZHANG H-X, ZOU S, et al. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications[J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20360-20376.
[18] IWASITA T. Electrocatalysis of methanol oxidation[J]. Electrochimica Acta, 2002, 47(22): 3663-3674.
[19] XIA Z, ZHANG X, SUN H, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048.
[20] KIMIAIE N, WEDLICH K, HEHEMANN M, et al. Results of a 20 000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system – degradation of the DMFC stack and the energy storage[J]. Energy & Environmental Science, 2014, 7(9): 3013-3025.
[21] CHEN C Y, LIU D H, HUANG C L, et al. Portable DMFC system with methanol sensor-less control[J]. Journal of Power Sources, 2007, 167(2): 442-449.
[22] DOHLE H, MERGEL J, STOLTEN D. Heat and power management of a direct-methanol-fuel-cell (DMFC) system[J]. Journal of Power Sources, 2002, 111(2): 268-282.
[23] HOGARTH M, CHRISTENSEN P, HAMNETT A, et al. The design and construction of high-performance direct methanol fuel cells. 1. Liquid-feed systems[J]. Journal of Power Sources, 1997, 69(1): 113-124.
[24] YU E H, KREWER U, SCOTT K. Principles and materials aspects of direct alkaline alcohol fuel cells[J]. Energies, 2010, 3(8): 1499-1528.
[25] HAO YU E, SCOTT K, REEVE R W. A study of the anodic oxidation of methanol on Pt in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 2003, 547(1): 17-24.
[26] COHEN J L, VOLPE D J, ABRUNA H D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes[J]. Physical Chemistry Chemical Physics, 2007, 9(1): 49-77.
[27] HAISCH T, KUBANNEK F, HAISCH C, et al. Quantification of formaldehyde production during alkaline methanol electrooxidation[J]. Electrochemistry Communications, 2019, 102: 57-62.
[28] YANG Y-Y, REN J, ZHANG H-X, et al. Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution[J]. Langmuir, 2013, 29(5): 1709-1716.
[29] LEY K L, LIU R, PU C, et al. Methanol oxidation on singl-phase Pt-Ru-Os ternary alloys[J]. Journal of the Electrochemical Society, 1997, 144(5): 1543-1548.
[30] BAI G, LIU C, GAO Z, et al. Electrocatalysis: Atomic carbon layers supported pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1970202.
[31] BEDEN B, LAMY C, BEWICK A, et al. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 121: 343-347.
[32] SRIRAMULU S, JARVI T D, STUVE E M. A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(111)[J]. Electrochimica Acta, 1998, 44(6): 1127-1134.
[33] HUANG X, YANG G, LI S, et al. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis[J]. Journal of Energy Chemistry, 2022, 68: 721-751.
[34] ZHANG J, QU X, HAN Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Applied Catalysis B: Environmental, 2020, 263: 118345.
[35] SHI H, LIAO F, ZHU W, et al. Effective PtAu nanowire network catalysts with ultralow pt content for formic acid oxidation and methanol oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16071-16079.
[36] TENG X, SHAN A, ZHU Y, et al. Promoting methanol oxidation reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochimica Acta, 2020, 353: 136542.
[37] ZHANG J-M, SUN S-N, LI Y, et al. A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26744-26751.
[38] WANG W, CHEN X, ZHANG X, et al. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation[J]. Nano Energy, 2020, 71: 104623.
[39] SCOFIELD M E, KOENIGSMANN C, WANG L, et al. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction[J]. Energy & Environmental Science, 2015, 8(1): 350-363.
[40] GAO N, WU X, LI X, et al. Facile synthesis of ternary PtPdCu alloy hexapods as highly efficient electrocatalysts for methanol oxidation[J]. RSC Advances, 2020, 10(21): 12689-12694.
[41] PENG H, REN J, WANG Y, et al. One-stone, two birds: Alloying effect and surface defects induced by Pt on Cu2−xSe nanowires to boost C-C bond cleavage for electrocatalytic ethanol oxidation[J]. Nano Energy, 2021, 88: 106307.
[42] ZHANG J, YE J, FAN Q, et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation[J]. Journal of the American Chemical Society, 2018, 140(36): 11232-11240.
[43] YANG X, WANG Y, TONG X, et al. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives[J]. Advanced Energy Materials, 2021, 12(5): 2102261.
[44] PETHAIAH S S, ARUNKUMAR J, RAMOS M, et al. The impact of anode design on fuel crossover of direct ethanol fuel cell[J]. Bulletin of Materials Science, 2016, 39(1): 273-278.
[45] FADZILLAH D M, KAMARUDIN S K, ZAINOODIN M A, et al. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview[J]. International Journal of Hydrogen Energy, 2019, 44(5): 3031-3054.
[46] YANG G, ZHANG Q, YU H, et al. Platinum-based ternary catalysts for the electrooxidation of ethanol[J]. Particuology, 2021, 58: 169-186.
[47] YANG G, NAMIN L M, AARON DESKINS N, et al. Influence of ∗OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol[J]. Journal of Catalysis, 2017, 353: 335-348.
[48] ZHANG B-W, LAI W-H, SHENG T, et al. Ordered platinum–bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction[J]. Journal of Materials Chemistry A, 2019, 7(10): 5214-5220.
[49] LIANG Z, SONG L, DENG S, et al. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(shell) electrocatalyst[J]. Journal of the American Chemical Society, 2019, 141(24): 9629-9636.
[50] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
[51] ZEB GUL SIAL M A, UD DIN M A, WANG X. Multimetallic nanosheets: Synthesis and applications in fuel cells[J]. Chemical Society Reviews, 2018, 47(16): 6175-6200.
[52] ZHAO T, ELZATAHRY A, LI X, et al. Single-micelle-directed synthesis of mesoporous materials[J]. Nature Reviews Materials, 2019, 4(12): 775-791.
[53] LI K, LI X, HUANG H, et al. One-nanometer-thick ptnirh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst[J]. Journal of the American Chemical Society, 2018, 140(47): 16159-16167.
[54] CHIU C-Y, YANG M-Y, LIN F-C, et al. Facile synthesis of Au-Pd core–shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination[J]. Nanoscale, 2014, 6(13): 7656-7665.
[55] RODUNER E. Understanding catalysis[J]. Chemical Society Reviews, 2014, 43(24): 8226-8239.
[56] ZHU L, LIN H, LI Y, et al. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials[J]. Nature Communications, 2016, 7(1): 12272.
[57] EXNER K S. Does a thermoneutral electrocatalyst correspond to the apex of a volcano plot for a simple two-electron process?[J]. Angewandte Chemie International Edition, 2020, 59(26): 10236-10240.
[58] SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541.
[59] HU C, ZHANG L, GONG J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(9): 2620-2645.
[60] WEI C, SUN Y, SCHERER G G, et al. Surface composition dependent ligand effect in tuning the activity of nickel–copper bimetallic electrocatalysts toward hydrogen evolution in alkaline[J]. Journal of the American Chemical Society, 2020, 142(17): 7765-7775.
[61] ZHAO T, WANG G, GONG M, et al. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction[J]. ACS Catalysis, 2020, 10(24): 15207-15216.
[62] CHEN G, XU C, HUANG X, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15(5): 564-569.
[63] LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nature Reviews Materials, 2017, 2(11): 17059.
[64] LIANG Z, QU C, ZHOU W, et al. Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage[J]. Advanced Science, 2019, 6(8): 1802005.
[65] SMITH A M, MOHS A M, NIE S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain[J]. Nature Nanotechnology, 2009, 4(1): 56-63.
[66] YANG X, TONG X, LIU X, et al. Methanol electrooxidation on core-shell Ag@Pdx catalysts[J]. Electrochemistry Communications, 2021, 123: 106917.
[67] SU K, ZHANG H, QIAN S, et al. Atomic crystal facet engineering of core–shell nanotetrahedrons restricted under sub-10 nanometer region[J]. ACS Nano, 2021, 15(3): 5178-5188.
[68] WANG Y, LI X, ZHANG M, et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting[J]. Advanced Materials, 2020, 32(40): 2000231.
[69] WILLIAMS B P, YOUNG A P, ANDONI I, et al. Strain-enhanced metallic intermixing in shape-controlled multilayered core–shell nanostructures: Toward shaped intermetallics[J]. Angewandte Chemie International Edition, 2020, 59(26): 10574-10580.
[70] ALINEZHAD A, GLOAG L, BENEDETTI T M, et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity[J]. Journal of the American Chemical Society, 2019, 141(41): 16202-16207.
[71] WANG H, XU S, TSAI C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036.
[72] SCHULER B, LEE J-H, KASTL C, et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin–orbit splitting, and strain[J]. ACS Nano, 2019, 13(9): 10520-10534.
[73] WU J, QI L, YOU H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012, 134(29): 11880-11883.
[74] CHEN S, OH H S, GLUDOVATZ B, et al. Real-time observations of trip-induced ultrahigh strain hardening in a dual-phase crmnfeconi high-entropy alloy[J]. Nature Communications, 2020, 11(1): 826.
[75] WU Y, NAN P, CHEN Z, et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands[J]. Advanced Science, 2020, 7(12): 1902628.
[76] STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Communications, 2010, 2(6): 454-460.
[77] HE T, WANG W, SHI F, et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis[J]. Nature, 2021, 598(7879): 76-81.
[78] LIU J, ZHANG J. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals[J]. Chemical Reviews, 2020, 120(4): 2123-2170.
[79] MAVRIKAKIS M, HAMMER B, NøRSKOV J K. Effect of strain on the reactivity of metal surfaces[J]. Physical Review Letters, 1998, 81(13): 2819-2822.
[80] GATES B C, KNOZINGER H. Advances in catalysis, impact of surface science on catalysis[J]. Elsevier Academic Press Inc, 2000, 45: 71-129.
[81] FENG Q, ZHAO S, HE D, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Ppt3Gga[J]. Journal of the American Chemical Society, 2018, 140(8): 2773-2776.
[82] LI M, LIU P, ADZIC R R. Platinum monolayer electrocatalysts for anodic oxidation of alcohols[J]. The Journal of Physical Chemistry Letters, 2012, 3(23): 3480-3485.
[83] LIU G, ZHOU W, JI Y, et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation[J]. Journal of the American Chemical Society, 2021, 143(29): 11262-11270.
[84] YANG P, YUAN X, HU H, et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation[J]. Advanced Functional Materials, 2018, 28(1): 1704774.
[85] SARNO M, PONTICORVO E, SCARPA D. PtRh and PtRh/MoS2 nano-electrocatalysts for methanol oxidation and hydrogen evolution reactions[J]. Chemical Engineering Journal, 2019, 377: 120600.
[86] HUANG L, ZHANG X, WANG Q, et al. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. Journal of the American Chemical Society, 2018, 140(3): 1142-1147.
[87] ZHANG Y, LIN Y, DUAN T, et al. Interfacial engineering of heterogeneous catalysts for electrocatalysis[J]. Materials Today, 2021, 48: 115-134.
[88] HAYASHI T, YAMASAKI K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions[J]. Chemical Reviews, 2003, 103(8): 2829-2844.
[89] CHELUCCI G, BALDINO S, BARATTA W. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions[J]. Accounts of Chemical Research, 2015, 48(2): 363-379.
[90] WITHAM C A, HUANG W, TSUNG C-K, et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles[J]. Nature Chemistry, 2010, 2(1): 36-41.
[91] WU D, KUSADA K, YAMAMOTO T, et al. Platinum-group-metal high-entropy-alloy nanoparticles[J]. Journal of the American Chemical Society, 2020, 142(32): 13833-13838.
[92] GUO S, SUN S. Fept nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(5): 2492-2495.
[93] ZHU C, FU S, SHI Q, et al. Single-atom electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(45): 13944-13960.
[94] ZHU C, DU D, EYCHMüLLER A, et al. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry[J]. Chemical Reviews, 2015, 115(16): 8896-8943.
[95] ZHAO W-Y, NI B, YUAN Q, et al. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation[J]. Advanced Energy Materials, 2017, 7(8): 1601593.
[96] YANG H, ZHANG J, SUN K, et al. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes[J]. Angewandte Chemie International Edition, 2010, 49(38): 6848-6851.
[97] LUO S, CHEN W, CHENG Y, et al. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation[J]. Advanced Materials, 2019, 31(40): e1903683.
[98] HUANG W, MA X Y, WANG H, et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Advanced Materials, 2017, 29(37): 1703057.
[99] KOWAL A, LI M, SHAO M, et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nature Materials, 2009, 8(4): 325-330.
[100] WANG H, TZENG Y-K, JI Y, et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15(2): 131-137.
[101] XIE C, NIU Z, KIM D, et al. Surface and interface control in nanoparticle catalysis[J]. Chemical Reviews, 2020, 120(2): 1184-1249.
[102] HWANG S J, KIM S-K, LEE J-G, et al. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2012, 134(48): 19508-19511.
[103] XIA B Y, WU H B, LI N, et al. One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angewandte Chemie International Edition, 2015, 54(12): 3797-3801.
[104] LOUKRAKPAM R, LUO J, HE T, et al. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: An assessment of the structural and electrocatalytic properties[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1682-1694.
[105] SHAO Q, WANG P, HUANG X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis[J]. Advanced Functional Materials, 2019, 29(3): 1806419.
[106] HU F, ABEYWEERA S C, YU J, et al. Quantifying electrocatalytic reduction of CO2 on twin boundaries[J]. Chem, 2020, 6(11): 3007-3021.
[107] CLARK E L, HAHN C, JARAMILLO T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44): 15848-15857.
[108] KIM D, XIE C, BECKNELL N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles[J]. Journal of the American Chemical Society, 2017, 139(24): 8329-8336.
[109] GAO F, WANG Y, GOODMAN D W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms[J]. Journal of the American Chemical Society, 2009, 131(16): 5734-5735.
[110] SLANAC D A, HARDIN W G, JOHNSTON K P, et al. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(23): 9812-9819.
[111] KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.
[112] GIANNAKAKIS G, FLYTZANI-STEPHANOPOULOS M, SYKES E C H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts[J]. Accounts of Chemical Research, 2019, 52(1): 237-247.
[113] DARBY M T, STAMATAKIS M, MICHAELIDES A, et al. Lonely atoms with special gifts: Breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5636-5646.
[114] ZHOU L, MARTIREZ J M P, FINZEL J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nature Energy, 2020, 5(1): 61-70.
[115] HAN J, LU J, WANG M, et al. Single atom alloy preparation and applications in heterogeneous catalysis[J]. Chinese Journal of Chemistry, 2019, 37(9): 977-988.
[116] DUCHESNE P N, LI Z Y, DEMING C P, et al. Golden single-atomic-site platinum electrocatalysts[J]. Nature Materials, 2018, 17(11): 1033-1039.
[117] LIU J, LUCCI F R, YANG M, et al. Tackling CO poisoning with single-atom alloy catalysts[J]. Journal of the American Chemical Society, 2016, 138(20): 6396-6399.
[118] JIANG L, LIU K, HUNG S F, et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts[J]. Nature Nanotechnology, 2020, 15(10): 848-853.
[119] INDERWILDI O R, JENKINS S J, KING D A. When adding an unreactive metal enhances catalytic activity: NOx decomposition over silver–rhodium bimetallic surfaces[J]. Surface Science, 2007, 601(17): L103-L108.
[120] GREINER M T, JONES T E, BEEG S, et al. Free-atom-like d states in single-atom alloy catalysts[J]. Nature Chemistry, 2018, 10(10): 1008-1015.
[121] HAN Z K, SARKER D, OUYANG R, et al. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence[J]. Nature Communications, 2021, 12(1): 1833.
[122] WANG Y, ZOU S, CAI W-B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials[J]. Catalysts, 2015, 5(3): 1507-1534.
[123] BIANCHINI C, SHEN P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J]. Chemical Reviews, 2009, 109(9): 4183-4206.
[124] BAI S, XU Y, CAO K, et al. Selective ethanol oxidation reaction at the Rh-SnO2 interface[J]. Advanced Materials, 2021, 33(5): e2005767.
[125] LAN B, HUANG M, WEI R L, et al. Ethanol electrooxidation on rhodium-lead catalysts in alkaline media: High mass activity, long-term durability, and considerable CO2 selectivity[J]. Small, 2020, 16(40): 2004380.
[126] ZHU C, LAN B, WEI RL, et al. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: A synergistic study of electrochemical ATR-SEIRAS and IRAS[J]. ACS Catalysis, 2019, 9(5): 4046-4053.
[127] BU L, ZHANG N, GUO S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410-1414.
[128] FENG Q, ZHAO S, HE D, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga[J]. Journal of the American Chemical Society, 2018, 140(8): 2773-2776.
[129] LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85.
[130] HAN S H, LIU H M, CHEN P, et al. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Advanced Energy Materials, 2018, 8(24): 1801326.
[131] DAI S, HUANG T-H, YAN X, et al. Promotion of ternary Pt–Sn–Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals[J]. ACS Energy Letters, 2018, 3(10): 2550-2557.
[132] WANG K, DU H, SRIPHATHOORAT R, et al. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation[J]. Advanced Materials, 2018, 30(45): e1804074.
[133] CHANG Q, KATTEL S, LI X, et al. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catalysis, 2019, 9(9): 7618-7625.
[134] JI S, CHEN Y, WANG X, et al. Chemical synthesis of single atomic site catalysts[J]. Chemical Reviews, 2020, 120(21): 11900-11955.
[135] ZANG W, KOU Z, PENNYCOOK S J, et al. Heterogeneous single atom electrocatalysis, where “singles” are “married”[J]. Advanced Energy Materials, 2020, 10(9): 1903181.
[136] LIU G, ROBERTSON A W, LI M M, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Communications, 2017, 9(8): 810-816.
[137] MAO J, YIN J, PEI J, et al. Single atom alloy: An emerging atomic site material for catalytic applications[J]. Nano Today, 2020, 34: 100917.
[138] YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313.
[139] JIAO J, LIN R, LIU S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of co2[J]. Nature Communications, 2019, 11(3): 222-228.
[140] CHEN C H, WU D, LI Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced Energy Materials, 2019, 9(20): 1803913.
[141] LAN B, HUANG M, WEI R-L, et al. Ethanol electrooxidation on rhodium–lead catalysts in alkaline media: High mass activity, long-term durability, and considerable CO2 selectivity[J]. Small 2020, 16(40): 2004380.
[142] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
[143] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[144] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[145] NøRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[146] CHANG T Y, TANAKA Y, ISHIKAWA R, et al. Direct imaging of Pt single atoms adsorbed on TiO2(110) surfaces[J]. Nano Letters, 2014, 14(1): 134-138.
[147] WANG L, ZHANG W, WANG S, et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst[J]. Nature Communications, 2016, 7: 14036.
[148] XIONG Y, DONG J, HUANG Z Q, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation[J]. Nature Nanotechnology, 2020, 15(5): 390-397.
[149] ALINEZHAD A, GLOAG L, BENEDETTI T M, et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity[J]. J Am Chem Soc, 2019, 141(41): 16202-16207.
[150] LI M, DUANMU K, WAN C, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature Catalysis, 2019, 2(6): 495-503.
[151] YAO Y, GU X K, HE D, et al. Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(51): 19964-19968.
[152] SUN D, WANG Y, LIVI K J T, et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis[J]. ACS Nano, 2019, 13(9): 10818-10825.
[153] BERTHEUSSEN E, VERDAGUER-CASADEVALL A, RAVASIO D, et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper[J]. Angewandte Chemie International Edition, 2016, 55(4): 1450-1454.
[154] WANG L, HIGGINS D C, JI Y, et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12572-12575.
[155] CHATTERJEE T, BOUTIN E, ROBERT M. Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: From comprehensive chemical shift data to formaldehyde quantification in water[J]. Dalton Transactions, 2020, 49(14): 4257-4265.
[156] BABIJ N R, MCCUSKER E O, WHITEKER G T, et al. NMR chemical shifts of trace impurities: Industrially preferred solvents used in process and green chemistry[J]. Organic Process Research & Development, 2016, 20(3): 661-667.
[157] RICHTER J B, ESSBACH C, SENKOVSKA I, et al. Quantitative in situ13C NMR studies of the electro-catalytic oxidation of ethanol[J]. Chemical Communications, 2019, 55(43): 6042-6045.
[158] YUAN X, ZHANG Y, CAO M, et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation[J]. Nano Letters, 2019, 19(7): 4752-4759.
[159] SPENDELOW J S, GOODPASTER J D, KENIS P J A, et al. Mechanism of CO oxidation on Pt(111) in alkaline media[J]. The Journal of Physical Chemistry B, 2006, 110(19): 9545-9555.
[160] WANG H, JUSYS Z, BEHM R J. Electrooxidation of acetaldehyde on carbon-supported Pt, PtRu and Pt3Sn and unsupported PtRu0.2 catalysts: A quantitative DEMS study[J]. Journal of Applied Electrochemistry, 2006, 36(11): 1187-1198.
[161] DU R, WANG J, WANG Y, et al. Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolution and ethanol oxidation[J]. Nature Communications, 2020, 11(1): 1590.
[162] CHEN L, LU L, ZHU H, et al. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts[J]. Nature Communications, 2017, 8: 14136.
[163] WANG W, ZHANG X, ZHANG Y, et al. Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation[J]. Nano Letters, 2020, 20(7): 5458-5464.
[164] YANG Y-Y, REN J, LI Q-X, et al. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catalysis, 2014, 4(3): 798-803.
[165] LAI S C S, KOPER M T M. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes[J]. Faraday Discussions, 2009, 140(0): 399-416.
[166] MA X Y, DING C, LI H, et al. Revisiting the acetaldehyde oxidation reaction on a Pt electrode by high-sensitivity and wide-frequency infrared spectroscopy[J]. The Journal of Physical Chemistry Letters, 2020, 11(20): 8727-8734.
[167] CHENG H, GUI R, YU H, et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2104026118.
[168] LUO S, TANG M, SHEN P K, et al. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts[J]. Advanced Materials, 2017, 29(8): 1601687.
[169] LUO S, SHEN P K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis[J]. ACS Nano, 2017, 11(12): 11946-11953.
[170] YUAN X, JIANG X, CAO M, et al. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization[J]. Nano Research, 2018, 12(2): 429-436.
[171] ZHANG W, YANG Y, HUANG B, et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials[J]. Advanced Materials, 2019, 31(15): e1805833.
[172] FAN X, TANG M, WU X, et al. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation[J]. Journal of Materials Chemistry A, 2019, 7(48): 27377-27382.
[173] CHEN P-C, LIU M, DU J S, et al. Interface and heterostructure design in polyelemental nanoparticles[J]. Science, 2019, 363(6430): 959-964.
[174] VOGT C, WECKHUYSEN B M. The concept of active site in heterogeneous catalysis[J]. Nature Reviews Chemistry, 2022, 6(2): 89-111.
[175] WANG X, XIE M, LYU F, et al. Bismuth oxyhydroxide-Pt inverse interface for enhanced methanol electrooxidation performance[J]. Nano Letters, 2020, 20(10): 7751-7759.
[176] XIAO L, LI G, YANG Z, et al. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis[J]. Advanced Functional Materials, 2021, 31(28): 2100982.
[177] SONG J, CHEN Y, HUANG H, et al. Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery[J]. Advanced Science, 2022, 9(6): e2104522.
[178] LV J, WANG L, LI R, et al. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction[J]. ACS Catalysis, 2021, 11(23): 14338-14351.
[179] LUO S, ZHANG L, LIAO Y, et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation[J]. Advanced Materials, 2021, 33(17): e2008508.
[180] GE J, YIN P, CHEN Y, et al. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis[J]. Advanced Materials, 2021, 33(9): e2006711.
[181] CHENG H, YANG N, LIU G, et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction[J]. Advanced Materials, 2020, 32(11): e1902964.
修改评论