中文版 | English
题名

对非厄米拓扑物态的量子模拟

其他题名
QUANTUM SIMULATION OF NON-HERMITIANDYNAMICAL TOPOLOGICAL STATES
姓名
姓名拼音
LIN Zidong
学号
11930042
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
鲁大为
导师单位
物理系
论文答辩日期
2022-05-12
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  量子信息及量子计算是一门基于量子力学的交叉学科,其目的是建造基于量子力学原理的、计算能力远超经典计算机的量子计算机。对于量子计算的研究,大概分为两大方向:量子算法和量子模拟。其中量子算法旨在利用量子力学中的相干性和叠加性为算法提供并行加速的运算能力;量子模拟则是利用可控量子系统去模拟目标量子系统的动力学。在具有量子计算潜力的物理体系中,核磁共振体系是研究最早也是目前发展最成熟的体系之一。虽然该体系的可拓展性存在问题,但是执行复杂精确的量子控制操作的能力使得它非常适合进行小规模的量子计算实验。本文的量子模拟实验就是基于核磁共振量子计算平台实现。
  量子拓扑物态的研究是凝聚态领域的一大热点。传统的量子拓扑相分类方法是基于平衡态定义的体拓扑不变量。这种表征在实验中具有挑战性,因为非局部拓扑不变量可能没有直接对应的可观测物理量。 最近,一种新的、在淬火动力学下定义的拓扑相理论被提出,这个理论为量子拓扑物态的实验研究带来了更好的可行性。而量子模拟就为这种基于淬火动力学的拓扑相研究提供了一个很好的平台:通过高可控性,量子模拟器可与拓扑系统建立映射关系,可在模拟器上模拟拓扑系统的动力学,并且可以直接在模拟器上测量拓扑不变量。
  目前尚没有非厄米的淬火动力学拓扑相的实验研究工作,但是噪声引起的非厄米效应在真实的量子系统中却又无处不在,并可能影响物质的基本状态。因此对非厄米的拓扑物态进行研究是非常有意义的。本论文的工作就是利用核磁共振平台对二维非厄米量子反常霍尔(QAH)模型进行量子模拟。与通常使用辅助量子比特引入非厄米效应的实验不同,本工作使用一种基于随机薛定谔方程的平均方法来引入非厄米耗散量子动力学,具有节省量子比特资源和简化量子门的优势。本实验工作证明了淬火动力学拓扑相在弱噪声下的稳定性,并观察到两种由强噪声驱动的拓扑相变以及一个对某些噪声总能保持拓扑性质稳定的特殊区域。该工作展示了一种可行的量子模拟方法,并为研究非厄米拓扑物理提供了另一个途径。 
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1. NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.2. TURING A M, et al. On computable numbers, with an application to the Entscheidungsproblem [J]. J. of Math, 1936, 58(345-363): 5.3. BARDEEN J. Surface states and rectification at a metal semi-conductor contact[J]. Phys. Rev., 1947, 71(10): 717.4. MOORE G. Moore’s law[J]. Electron. Mag., 1965, 38(8): 114.5. CILIBERTO C, HERBSTER M, IALONGO A D, et al. Quantum machine learning: a classical perspective[J]. Proc. R. Soc. A, 2018, 474(2209): 20170551.6. FEYNMAN R. There’s plenty of room at the bottom[M]. CRC Press, 2018.7. TERSOFF J, HAMANN D R. Theory of the scanning tunneling microscope[J]. Phys. Rev. B, 1985, 31(2): 805.8. HOPE J. Theory of input and output of atoms from an atomic trap[J]. Phys. Rev. A, 1997, 55 (4): R2531.9. LEVINE M A, MARRS R, HENDERSON J, et al. The electron beam ion trap: A new instrument for atomic physics measurements[J]. Phys. Scr., 1988, 1988(T22): 157.10. FEYNMAN R P. Simulating physics with computers[M]//Feynman and computation. CRC Press, 2018: 133-153.11. DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proc. R. Soc. A, 1985, 400(1818): 97-117.12. SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124-134.13. GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996: 212-219.14. GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys. Rev. Lett., 1997, 79(2): 325.15. ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.16. ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.17. WEISS D S, SAFFMAN M. Quantum computing with neutral atoms[J]. Phys. Today, 2017, 70 (7).18. BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped-ion quantum computing: Progress and challenges[J]. Appl. Phys. Rev., 2019, 6(2): 021314.19. CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy [J]. Proc. Natl. Acad. Sci., 1997, 94(5): 1634-1639.20. KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816): 46-52.21. KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconducting qubits[J]. Appl. Phys. Rev., 2019, 6(2): 021318.22. KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantum computing[J]. J. Appl. Phys., 2021, 129(4): 041102.23. CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bull., 2013, 38(2): 134-138.24. KOCHER C A, COMMINS E D. Polarization correlation of photons emitted in an atomic cascade[J]. Phys. Rev. Lett., 1967, 18(15): 575.25. FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories[J]. Phys. Rev. Lett., 1972, 28(14): 938.26. BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13): 1895.27. BENNETT C H, WIESNER S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys. Rev. Lett., 1992, 69(20): 2881.28. LLOYD S. Universal quantum simulators[J]. Science, 1996, 273(5278): 1073-1078.29. SMIRNOV A Y, SAVEL’EV S, MOUROKH L, et al. Modelling chemical reactions using semiconductor quantum dots[J]. EPL (Europhys. Lett.), 2007, 80(6): 67008.30. GERRITSMA R, KIRCHMAIR G, ZÄHRINGER F, et al. Quantum simulation of the Dirac equation[J]. Nature, 2010, 463(7277): 68-71.31. BERMUDEZ A, MARTIN-DELGADO M, SOLANO E. Exact mapping of the 2+ 1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal[J]. Phys. Rev. A, 2007, 76(4): 041801.32. LAMATA L, LEÓN J, SCHÄTZ T, et al. Dirac equation and quantum relativistic effects in a single trapped ion[J]. Phys. Rev. Lett., 2007, 98(25): 253005.33. LU C Y, GAO W B, GÜHNE O, et al. Demonstrating anyonic fractional statistics with a six qubit quantum simulator[J]. Phys. Rev. Lett., 2009, 102(3): 030502.34. YOU J, SHI X F, HU X, et al. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits[J]. Phys. Rev. B, 2010, 81(1): 014505.35. ASPURU-GUZIK A, DUTOI A D, LOVE P J, et al. Simulated quantum computation of molecular energies[J]. Science, 2005, 309(5741): 1704-1707.36. BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.37. ZALKA C. Efficient simulation of quantum systems by quantum computers[J]. Fortschr. Phys., 1998, 46(6-8): 877-879.38. RABI I I, ZACHARIAS J R, MILLMAN S, et al. A new method of measuring nuclear magneticmoment[J]. Phys. Rev., 1938, 53(4): 318.39. BLOCH F. Nuclear induction[J]. Phys. Rev., 1946, 70(7-8): 460.40. FREEMAN R. Handbook of nuclear magnetic resonance[J]. 1987.41. HARRIS R K. Nuclear magnetic resonance spectroscopy[J]. 1986.42. HORE P J. Nuclear magnetic resonance[M]. Oxford University Press, USA, 2015.43. STEWART W E, SIDDALL T H. Nuclear magnetic resonance studies of amides[J]. Chem.Rev., 1970, 70(5): 517-551.44. VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation[J]. Rev. Mod. Phys., 2005, 76(4): 1037.45. ZEEMAN P. Over de invloed eener magnetisatie op den aard van het door een stof uitgezondenlicht; Over de invloed eener magnetisatie op den aard van het door een stof uitgezonden licht;On the influence of magnetism on the nature of the light emitted by a substance.[J]. Verslagen enMededeelingen der Kon. Academie van Wetenschappen, Afd. Natuurkunde, 1896, 5: 181-184.46. HAEBERLEN U, WAUGH J. Coherent averaging effects in magnetic resonance[J]. Phys. Rev.,1968, 175(2): 453.47. BLOCH F, SIEGERT A. Magnetic resonance for nonrotating fields[J]. Phys. Rev., 1940, 57(6): 522.48. KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: designof NMR pulse sequences by gradient ascent algorithms[J]. J. Magn. Reson., 2005, 172(2):296-305.49. CHUANG I L, VANDERSYPEN L M, ZHOU X, et al. Experimental realization of a quantumalgorithm[J]. Nature, 1998, 393(6681): 143-146.50. CHUANG I L, GERSHENFELD N, KUBINEC M G, et al. Bulk quantum computation withnuclear magnetic resonance: theory and experiment[J]. Proc. R. Soc. London, Ser. A, 1998,454(1969): 447-467.51. GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science,1997, 275(5298): 350-356.52. KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation[J]. Phys. Rev. A, 1998, 57(5): 3348.53. VANDERSYPEN L M, YANNONI C S, SHERWOOD M H, et al. Realization of logicallylabeled effective pure states for bulk quantum computation[J]. Phys. Rev. Lett., 1999, 83(15):3085.54. CORY D G, PRICE M D, HAVEL T F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing[J]. Phys. D, 1998, 120(1-2): 82-101.55. KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantuminformation processing[J]. Nature, 2000, 404(6776): 368-370.56. FREEMAN R. Spin choreography[M]. Oxford University Press Oxford, 1998.57. KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination ofthe fine-structure constant based on quantized Hall resistance[J]. Phys. Rev. Lett., 1980, 45(6):494.58. TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extreme quantum limit[J]. Phys. Rev. Lett., 1982, 48(22): 1559.59. THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Phys. Rev. Lett., 1982, 49(6): 405.60. WEN X G. Topological orders in rigid states[J]. Int. J. Mod. Phys. B, 1990, 4(02): 239-271.61. LANDAU L, LIFSHITZ E. Statistical Physics, Course Theoretical Phys., vol. 5[M].Butterworth-Heinemann, Woburn, Mass, 1999.62. HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Rev. Mod. Phys., 2010, 82(4): 3045.63. QI X L, ZHANG S C. Topological insulators and superconductors[J]. Rev. Mod. Phys., 2011,83(4): 1057.64. CHIU C K, TEO J C, SCHNYDER A P, et al. Classification of topological quantum matterwith symmetries[J]. Rev. Mod. Phys., 2016, 88(3): 035005.65. ANDO Y, FU L. Topological crystalline insulators and topological superconductors: Fromconcepts to materials[J]. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361-381.66. SATO M, ANDO Y. Topological superconductors: a review[J]. Rep. Prog. Phys., 2017, 80(7):076501.67. XIE B, WANG H X, ZHANG X, et al. Higher-order band topology[J]. Nat. Rev. Phys., 2021,3(7): 520-532.68. KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin Hall insulator state in HgTequantum wells[J]. Science, 2007, 318(5851): 766-770.69. CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalousHall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.70. HE Q L, PAN L, STERN A L, et al. Chiral Majorana fermion modes in a quantum anomalousHall insulator–superconductor structure[J]. Science, 2017, 357(6348): 294-299.71. HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190): 970-974.72. CHEN Y, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-dimensionaltopological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.73. XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with asingle Dirac cone on the surface[J]. Nat. Phys., 2009, 5(6): 398-402.74. BRADLYN B, ELCORO L, CANO J, et al. Topological quantum chemistry[J]. Nature, 2017,547(7663): 298-305.75. ELLIOTT S R, FRANZ M. Colloquium: Majorana fermions in nuclear, particle, and solid-statephysics[J]. Rev. Mod. Phys., 2015, 87(1): 137.76. ALICEA J. New directions in the pursuit of Majorana fermions in solid state systems[J]. Rep.Prog. Phys., 2012, 75(7): 076501.77. READ N, GREEN D. Paired states of fermions in two dimensions with breaking of parity andtime-reversal symmetries and the fractional quantum Hall effect[J]. Phys. Rev. B, 2000, 61(15):10267.78. KITAEV A Y. Unpaired Majorana fermions in quantum wires[J]. Phys.-Usp., 2001, 44(10S):131.79. WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for BoseEinstein condensates[J]. Science, 2016, 354(6308): 83-88.80. AIDELSBURGER M, LOHSE M, SCHWEIZER C, et al. Measuring the Chern number ofHofstadter bands with ultracold bosonic atoms[J]. Nat. Phys., 2015, 11(2): 162-166.81. JOTZU G, MESSER M, DESBUQUOIS R, et al. Experimental realization of the topologicalHaldane model with ultracold fermions[J]. Nature, 2014, 515(7526): 237-240.82. MIYAKE H, SIVILOGLOU G A, KENNEDY C J, et al. Realizing the Harper Hamiltonianwith laser-assisted tunneling in optical lattices[J]. Phys. Rev. Lett., 2013, 111(18): 185302.83. AIDELSBURGER M, ATALA M, LOHSE M, et al. Realization of the Hofstadter Hamiltonianwith ultracold atoms in optical lattices[J]. Phys. Rev. Lett., 2013, 111(18): 185301.84. CAIO M, COOPER N R, BHASEEN M. Quantum quenches in Chern insulators[J]. Phys. Rev.Lett., 2015, 115(23): 236403.85. HU Y, ZOLLER P, BUDICH J C. Dynamical buildup of a quantized hall response from nontopological states[J]. Phys. Rev. Lett., 2016, 117(12): 126803.86. WANG C, ZHANG P, CHEN X, et al. Scheme to measure the topological number of a Cherninsulator from quench dynamics[J]. Phys. Rev. Lett., 2017, 118(18): 185701.87. FLÄSCHNER N, VOGEL D, TARNOWSKI M, et al. Observation of dynamical vortices afterquenches in a system with topology[J]. Nat. Phys., 2018, 14(3): 265-268.88. SONG B, ZHANG L, HE C, et al. Observation of symmetry-protected topological band withultracold fermions[J]. Sci. Adv, 2018, 4(2): eaao4748.89. MCGINLEY M, COOPER N R. Classification of topological insulators and superconductorsout of equilibrium[J]. Phys. Rev. B, 2019, 99(7): 075148.90. CAI H, LIU J, WU J, et al. Experimental observation of momentum-space chiral edge currentsin room-temperature atoms[J]. Phys. Rev. Lett., 2019, 122(2): 023601.91. LU Y H, WANG B Z, LIU X J. Ideal Weyl semimetal with 3D spin-orbit coupled ultracoldquantum gas[J]. Sci. Bull., 2020, 65(24): 2080-2085.92. QIU X, DENG T S, HU Y, et al. Fixed points and dynamic topological phenomena in a paritytime-symmetric quantum quench[J]. iScience, 2019, 20: 392-401.93. XIE D, DENG T S, XIAO T, et al. Topological quantum walks in momentum space with aBose-Einstein condensate[J]. Phys. Rev. Lett., 2020, 124(5): 050502.94. HU H, ZHAO E. Topological invariants for quantum quench dynamics from unitary evolution[J]. Phys. Rev. Lett., 2020, 124(16): 160402.95. CHEN X, WANG C, YU J. Linking invariant for the quench dynamics of a two-dimensionaltwo-band Chern insulator[J]. Phys. Rev. A, 2020, 101(3): 032104.96. ZHANG L, ZHANG L, NIU S, et al. Dynamical classification of topological quantum phases[J]. Sci. Bull., 2018, 63(21): 1385-1391.97. YU D, PENG B, CHEN X, et al. Topological holographic quench dynamics in a syntheticfrequency dimension[J]. Light: Sci. Appl., 2021, 10(1): 1-11.98. YE J, LI F. Emergent topology under slow nonadiabatic quantum dynamics[J]. Phys. Rev. A,2020, 102(4): 042209.99. LI L, ZHU W, GONG J. Direct dynamical characterization of higher-order topological phaseswith nested band inversion surfaces[J]. Sci. Bull., 2021, 66(15): 1502-1510.100. ZHU B, KE Y, ZHONG H, et al. Dynamic winding number for exploring band topology[J].Phys. Rev. Res., 2020, 2(2): 023043.101. ZHOU L, GONG J. Non-Hermitian Floquet topological phases with arbitrarily many realquasienergy edge states[J]. Phys. Rev. B, 2018, 98(20): 205417.102. SUN W, YI C R, WANG B Z, et al. Uncover topology by quantum quench dynamics[J]. Phys.Rev. Lett., 2018, 121(25): 250403.103. YI C R, ZHANG L, ZHANG L, et al. Observing topological charges and dynamical bulk-surfacecorrespondence with ultracold atoms[J]. Phys. Rev. Lett., 2019, 123(19): 190603.104. SONG B, HE C, NIU S, et al. Observation of nodal-line semimetal with ultracold fermions inan optical lattice[J]. Nat. Phys., 2019, 15(9): 911-916.105. WANG Y, JI W, CHAI Z, et al. Experimental observation of dynamical bulk-surface correspondence in momentum space for topological phases[J]. Phys. Rev. A, 2019, 100(5): 052328.106. JI W, ZHANG L, WANG M, et al. Quantum simulation for three-dimensional chiral topologicalinsulator[J]. Phys. Rev. Lett., 2020, 125(2): 020504.107. XIN T, LI Y, FAN Y A, et al. Quantum phases of three-dimensional chiral topological insulatorson a spin quantum simulator[J]. Phys. Rev. Lett., 2020, 125(9): 090502.108. NIU J, YAN T, ZHOU Y, et al. Simulation of higher-order topological phases and relatedtopological phase transitions in a superconducting qubit[J]. Sci. Bull., 2021, 66(12): 1168-1175.109. BREUER H P, PETRUCCIONE F, et al. The theory of open quantum systems[M]. OxfordUniversity Press on Demand, 2002.110. XIAO L, DENG T, WANG K, et al. Non-Hermitian bulk–boundary correspondence in quantumdynamics[J]. Nat. Phys., 2020, 16(7): 761-766.111. WEIDEMANN S, KREMER M, HELBIG T, et al. Topological funneling of light[J]. Science,2020, 368(6488): 311-314.112. GHATAK A, BRANDENBOURGER M, VAN WEZEL J, et al. Observation of non-Hermitiantopology and its bulk–edge correspondence in an active mechanical metamaterial[J]. Proc. Natl.Acad. Sci., 2020, 117(47): 29561-29568.113. HELBIG T, HOFMANN T, IMHOF S, et al. Generalized bulk–boundary correspondence innon-Hermitian topolectrical circuits[J]. Nat. Phys., 2020, 16(7): 747-750.114. WU Y, LIU W, GENG J, et al. Observation of parity-time symmetry breaking in a single-spinsystem[J]. Science, 2019, 364(6443): 878-880.115. ZHANG W, OUYANG X, HUANG X, et al. Observation of non-Hermitian topology withnonunitary dynamics of solid-state spins[J]. Phys. Rev. Lett., 2021, 127(9): 090501.116. ASHIDA Y, GONG Z, UEDA M. Non-hermitian physics[J]. Adv. Phys., 2020, 69(3): 249-435.117. BERGHOLTZ E J, BUDICH J C, KUNST F K. Exceptional topology of non-Hermitian systems[J]. Rev. Mod. Phys., 2021, 93(1): 015005.118. HEISS W. The physics of exceptional points[J]. J. Phys. A: Math. Theor., 2012, 45(44): 444016.119. LEE T E. Anomalous edge state in a non-Hermitian lattice[J]. Phys. Rev. Lett., 2016, 116(13):133903.120. LEYKAM D, BLIOKH K Y, HUANG C, et al. Edge modes, degeneracies, and topologicalnumbers in non-Hermitian systems[J]. Phys. Rev. Lett., 2017, 118(4): 040401.121. XU Y, WANG S T, DUAN L M. Weyl exceptional rings in a three-dimensional dissipative coldatomic gas[J]. Phys. Rev. Lett., 2017, 118(4): 045701.122. XIONG Y. Why does bulk boundary correspondence fail in some non-hermitian topologicalmodels[J]. J. Phys. Commun., 2018, 2(3): 035043.123. KUNST F K, EDVARDSSON E, BUDICH J C, et al. Biorthogonal bulk-boundary correspondence in non-Hermitian systems[J]. Phys. Rev. Lett., 2018, 121(2): 026808.124. YAO S, SONG F, WANG Z. Non-hermitian chern bands[J]. Phys. Rev. Lett., 2018, 121(13):136802.125. YAO S, WANG Z. Edge states and topological invariants of non-Hermitian systems[J]. Phys.Rev. Lett., 2018, 121(8): 086803.126. ZHANG L, ZHANG L, LIU X J. Quench-induced dynamical topology under dynamical noise[J]. Phys. Rev. Res., 2021, 3(1): 013229.127. GARDINER C, ZOLLER P. Quantum Noise, Springer-Verlag, Berlin (2000)[J]. 2004.128. GARDINER C, ZOLLER P. The Quantum World of Ultra-Cold Atoms and Light Book I:Foundations of Quantum Optics: volume 2[M]. World Scientific Publishing Company, 2014.129. LIU X J, LAW K T, NG T K. Realization of 2D spin-orbit interaction and exotic topologicalorders in cold atoms[J]. Phys. Rev. Lett., 2014, 112(8): 086401.130. WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for BoseEinstein condensates[J]. Science, 2016, 354(6308): 83-88.131. GARDINER C, ZOLLER P. Quantum Noise, Springer-Verlag, Berlin (2000)[J]. 2004.132. GARDINER C, ZOLLER P. The Quantum World of Ultra-Cold Atoms and Light Book I:Foundations of Quantum Optics: volume 2[M]. World Scientific Publishing Company, 2014.133. WU Y, LIU W, GENG J, et al. Observation of parity-time symmetry breaking in a single-spinsystem[J]. Science, 2019, 364(6443): 878-880.134. ZHANG W, OUYANG X, HUANG X, et al. Observation of non-Hermitian topology withnonunitary dynamics of solid-state spins[J]. Phys. Rev. Lett., 2021, 127(9): 090501.135. GÜNTHER U, SAMSONOV B F. Naimark-Dilated P T-Symmetric Brachistochrone[J]. Phys.Rev. Lett., 2008, 101(23): 230404.136. KAWABATA K, ASHIDA Y, UEDA M. Information retrieval and criticality in parity-timesymmetric systems[J]. Phys. Rev. Lett., 2017, 119(19): 190401.137. ZHANG L, ZHANG L, NIU S, et al. Dynamical classification of topological quantum phases[J]. Sci. Bull., 2018, 63(21): 1385-1391.138. ZHANG L, ZHANG L, LIU X J. Quench-induced dynamical topology under dynamical noise[J]. Phys. Rev. Res., 2021, 3(1): 013229.139. SCHIRMER R E, NOGGLE J H. The nuclear Overhauser effect; chemical applications byJoseph N. Noggle and Roger E. Schirmer[M]. Academic Press, 1971

所在学位评定分委会
物理系
国内图书分类号
O413
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336363
专题理学院_物理系
推荐引用方式
GB/T 7714
林子栋. 对非厄米拓扑物态的量子模拟[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930042-林子栋-物理系.pdf(22121KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林子栋]的文章
百度学术
百度学术中相似的文章
[林子栋]的文章
必应学术
必应学术中相似的文章
[林子栋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。