中文版 | English
题名

自然电位法在滑坡监测中的应用研究

其他题名
RESHEARCHONTHEAPPLICATIONOF SELF-POTENTIAL METHOD IN LANDSLIDE MONITORING
姓名
姓名拼音
MO Chunyu
学号
11930412
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
韩鹏
导师单位
地球与空间科学系
论文答辩日期
2022-06-15
论文提交日期
2022-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

滑坡是最主要的地质灾害之一,其中降雨诱发型滑坡分布范围最广、造成的损失最大。降雨入渗会增加近地表岩土体的含水饱和度从而使其容重增大、抗剪强度下降,进而降低坡体稳定性。研究坡体雨水入渗及浅地表水的流动过程对滑坡的监测预警至关重要。基于动电机制下的双电层模型,降雨入渗过程中孔隙水的流动可产生自然电位(SP)响应。目前,自然电位方法已被用于环境监测、矿产勘探等领域,在滑坡监测中应用相对较少,国内相关研究尚不多见。因此,本研究基于室内控制试验,开展自然电位法在滑坡监测中的应用探索,旨在获取流体入渗过程中的自然电位响应,探讨自然电位响应与变饱和流动的定量关系,为基于自然电位数据反演地下流场打下基础。

   首先,我们建立了室内自然电位观测系统,通过试验发现市面已有的测量电极在室内小尺度试验中存在显著的尺度效应,严重影响试验结果。为此,本文研制了一种适用于短期室内模拟试验的微型铅-氯化铅固体不极化电极。利用3D打印技术快速制备复杂结构、高精度微型电极壳体;在电解质制备中添加亲水性强和离子传导性高的纳米级气相二氧化硅,提升电极的稳定性。电极性能测试结果显示,自制的微型铅系固体不极化电极具有尺寸小、温度系数低、电极电位稳定性好及自噪音与市面上体积大的电极相当等特点,达到了室内模拟试验的要求。

然后,基于开发的微型不极化电极,开展了室内一维渗流试验和二维滑坡控制试验。试验结果表明,自然电位对流体流动敏感,可准确反映流体的一维变饱和渗流过程。通过对观测数据的定量分析,标定了饱和状态下的动电耦合系数,推导了基于动电耦合过程的达西流速和基于孔隙渗流过程的达西流速,发现两者具有较好一致性。上述结果表明自然电位观测能够定量地反映一维渗流流速的大小,揭示了自然电位响应与变饱和流动的定量关系。二维滑坡试验中,在砂土没有完全饱和时自然电位能反映水的流动方向和水分汇集区域,可在一定程度上反映非饱和土体的渗流过程。

   综上,本研究开发小型室内滑坡控制试验平台,研制了适用于室内模拟试验的新型微型铅系固体不极化电极,开展了降水入渗滑坡试验。通过入渗过程中岩土内的高密度自然电位、孔隙压力、温湿度等物理量的同步观测,获取了流体入渗过程中的自然电位响应,建立了一维渗流过程中自然电位场与流场的定量关系,为自然电位法在滑坡监测中的应用提供基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] TERAJIMA T, MIYAHIRA E I, MIYAJIMA H, et al. How hydrological factors initiate instability in a model sandy slope [J]. Hydrological Processes, 2014, 28(23): 5711-5724.
[2] WANG F, DAI Z, TAKAHASHI I, et al. Soil moisture response to water infiltration in a 1-D slope soil column model [J]. Engineering Geology, 2020, 267(C).105482.
[3] 胡开颜, 莫淳淯, 张益华, 等. 基于自然电位法的滑坡监测实验研究 [J]. 地球物理学报, 2021, 64(12): 4582-4593.
[4] 艾志雄, 牛恩宽, 刘波. 降雨诱发滑坡分析 [J]. 灾害与防治工程, 2005, 2:9-11.
[5] 赖小玲, 叶为民, 王世梅. 滑坡滑带土非饱和蠕变特性试验研究 [J]. 岩土工程学报, 2012, 34(2): 286-293.
[6] SCHULZ W H, MCKENNA J P, KIBLER J D, et al. Relations between hydrology and velocity of a continuously moving landslide-evidence of pore-pressure feedback regulating landslide motion? [J]. Landslides, 2009, 6(3): 181-190.
[7] 李庆峰, 李晓峰, 刘岩. 白云岩储层电成像视地层水电阻率流体识别技术 [J]. 测井技术, 2017, 41(4): 412-415.
[8] 陈红钊. 地下磁流体探测方法中的电阻率成像反演研究 [D]; 湖南科技大学, 2012.
[9] 徐兴倩, 苏立君, 梁双庆. 地球物理方法探测滑坡体结构特征研究现状综述 [J]. 地球物理学进展, 2015, 30(03): 1449-1458.
[10] TRAVELLETTI J, DEMAND J, JABOYEDOFF M, et al. Mass movement characterization using a reflexion and refraction seismic survey with the sloping local base level concept [J]. Geomorphology, 2010, 116(1-2): 1-10.
[11] TRAVIS N, JOHN B, JEN P, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography [J]. Catena, 2021, 207(3): 105553.
[12] 仇勇海. 金属硫化矿自然电场形成机理的探讨 [J]. 地质与勘探, 1981(08): 47-52.
[13] 吴超, 刘嘉文, 崔益安. 基于自然电场传感器的地下污染监测 [J]. 湖南文理学院学报: 自然科学版, 2017, 29(4): 23-26.
[14] Yousef Salem B A,Yousef Mohamed H M,AbdElsalam Hussein F, et al. Detection of the Possible Buried Archeological Targets Using the Geophysical Methods of Ground Penetrating Radar (GPR) and Self Potential (SP), Kom Ombo Temple, Aswan Governorate, Egypt[J]. Geomaterials,2020,10(04): 105-117.
[15] EPPELBAUM L V. Quantitative analysis of self-potential anomalies in archaeological sites of Israel: an overview [J]. Environmental Earth Sciences, 2020, 79(377): 1-15.
[16] 刘惠国. 垮梁子滑坡钻孔地下水自然电位法研究 [J]. 甘肃水利水电技术, 2018, 54(7): 19-22.
[17] LAPENNA V, LORENZO P, PERRONE A, et al. High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy) [J]. Bulletin of Engineering Geology and the Environment, 2003, 62(3): 259-268.
[18] YAMAZAKI T, HATTORI K, KANEDA H, et al. Development of Monitoring System to Understand Preparation Processes of Rainfall‐Induced Landslides Estimation of Slip Surface and In Situ Observation Using Electromagnetic Methods [J]. Electronics and Communications in Japan, 2017, 100(10): 3-11.
[19] KUMAR R, PAL S K, GUPTA P K. Water Seepage Mapping in an Underground Coal-Mine Barrier Using Self-potential and Electrical Resistivity Tomography [J]. Mine Water and the Environment, 2021, 40(3): 1-17.
[20] 刘加文, 王治军, 杜志伟. 自然电场法在场地地下水勘查中的应用 [J]. 工程地球物理学报, 2009, 6(5): 612-615.
[21] SILL W R. Self-potential modeling from primary flows [J]. Geophysics, 1983, 48(1): 76-86.
[22] DUCHIN S, DERJAGUIN B. Surface and Colloid Science: Electrokinetic Phenomena [M]. Wiley, 1974.
[23] THONY J-L, MORAT P, VACHAUD G, et al. Field characterization of the relationship between electrical potential gradients and soil water flux [J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 1997, 325(5): 317-321.
[24] SUSKI B, REVIL A, TITOV K, et al. Monitoring of an infiltration experiment using the self‐potential method [J]. Water Resources Research, 2006, 42(8): 1013-1016.
[25] REVIL A, CEREPI A. Streaming potentials in two‐phase flow conditions [J]. Geophysical Research Letters, 2004, 31(11): 293-317.
[26] ALLèGRE V, JOUNIAUX L, LEHMANN F, et al. Streaming potential dependence on water-content in Fontainebleau sand [J]. Geophysical Journal International, 2010, 182(3): 1248-1266.
[27] GUICHET X, JOUNIAUX L, POZZI J P. Streaming potential of a sand column in partial saturation conditions [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 1-12.
[28] VINOGRADOV J, JACKSON M. Multiphase streaming potential in sandstones saturated with gas/brine and oil/brine during drainage and imbibition [J]. Geophysical Research Letters, 2011, 38(1): 1-7.
[29] MAINEULT A, BERNABé Y, ACKERER P. Electrical Response of Flow, Diffusion, and Advection in a Laboratory Sand Box [J]. Vadose Zone Journal, 2004, 3(4): 1180-1192.
[30] CASTERMANT J, MENDONçA C, REVIL A, et al. Redox potential distribution inferred from self‐potential measurements associated with the corrosion of a burden metallic body [J]. Geophysical Prospecting, 2008, 56(2): 269-282.
[31] NYQUIST J E, CORRY C E. Self-potential: The ugly duckling of environmental geophysics [J]. The Leading Edge, 2002, 21(5): 446-451.
[32] PETIAU G. Second generation of lead-lead chloride electrodes for geophysical applications [J]. Pure and applied geophysics, 2000, 157(3): 357-382.
[33] PETIAU G, DUPIS A. Noise, temperature coefficient, and long time stability of electrodes for telluric observations [J]. Geophysical Prospecting, 1980, 28(5): 792-804.
[34] 王辉, 叶高峰, 魏文博. Pb-PbCl2 不极化电极的设计与实现 [J]. 地震地磁观测与研究, 2010, (3): 115-120.
[35] 陆阳泉, 梁子斌, 刘建毅. 固体不极化电极的研制及其应用效果 [J]. 物探与化探, 1999, 23(1): 64-5, 71.
[36] 宋艳茹. 超低频段地震电磁场观测技术研究 [D]; 中国地震局地震预测研究所, 2012.
[37] 尚延杰. 固体不极化电极的研究与制作 [D]; 成都理工大学, 2020.
[38] MBOH C M, HUISMAN J A, ZIMMERMANN E, et al. Coupled Hydrogeophysical Inversion of Streaming Potential Signals for Unsaturated Soil Hydraulic Properties [J]. Vadose Zone Journal, 2012, 11(2): 112-7.
[39] MAINEULT A, BERNABé Y, ACKERER P. Detection of advected concentration and pH fronts from self-potential measurements [J]. 2005, 110(B11):205.
[40] JOUGNOT D, LINDE N.Self-potentials in partially saturated media: the importance of explicit modeling of electrode effects[J]. Vadose Zone Journal, 2013, 12(2): 1-49.
[41] 姜健. 井—地ERT不极化电极设计与性能研究 [D]; 吉林大学, 2013.
[42] 李荻. 电化学原理 [M]. 北京:北京航空航天大学出版社, 2008.
[43] 查全性. 电极过程动力学导论 [M]. 北京:科学出版社, 2002.
[44] REVIL A, LINDE N, CEREPI A, et al. Electrokinetic coupling in unsaturated porous media [J]. Journal of Colloid & Interface Science, 2007, 313(1): 315-327.
[45] Revil A, Jardani A. The self-potential method: Theory and applications in environmental geosciences[M]. Cambridge University Press, 2013.
[46] JOUGNOT D, LINDE N, et al. Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark [J]. Journal of Hydrology Amsterdam, 2015.521: 314-327
[47] JOUGNOT D, LINDE N, REVIL A, et al. Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils [J]. Vadose Zone Journal, 2012, 11(1): 1-39.
[48] JACKSON M. Characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model [J]. Journal of Geophysical Research: Solid Earth, 2008,113(B4): 201.
[49] REVIL A. Constitutive equations for ionic transport in porous shales [J]. Journal of Geophysical Research Solid Earth, 2004, 109(B3): 208.
[50] REYNOLDS J M. An Introduction to Applied and Environmental Geophysics [M]. John Wiley & Sons, 2011.
[51] REVIL A, QI Y, GHORBANI A, et al. Induced polarization of volcanic rocks. 3. Imaging clay cap properties in geothermal fields [J]. Geophysical Journal International, 2019, 218(2): 1398-1427.
[52] REVIL A. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations [J] Advances in Water Resources, 2017, 103: 119-138.
[53] ARCHIE G. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Petroleum Technology 1942 [Z]. October
[54] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Trans AIME, 1942, 146(01): 54-62.
[55] RICHARDS L A. Capillary conduction of liquids through porous media [J]. Physics, 1931, 1(5): 318-333.
[56] VAN GENUCHTEN M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil science society of America journal, 1980, 44(5): 892-898.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P642.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336364
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
莫淳淯. 自然电位法在滑坡监测中的应用研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930412-莫淳淯-地球与空间科学(4566KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[莫淳淯]的文章
百度学术
百度学术中相似的文章
[莫淳淯]的文章
必应学术
必应学术中相似的文章
[莫淳淯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。