[1] SEIDEL P. Applied superconductivity: handbook on devices and applications[M]. John Wiley& Sons, 2015.
[2] ONNES M H, LEIDEN C, ONNES H K. What are superconductors[J]. Renewable and Sus tainable Energy Reviews, 2016, 55: 59-72.
[3] HUANG S, LIENHARD B, CALUSINE G, et al. Microwave package design for superconduct ing quantum processors[J]. PRX Quantum, 2021, 2(2): 020306.
[4] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J]. Physicalreview, 1957, 108(5): 1175.
[5] GIRVIN S M. Circuit QED: superconducting qubits coupled to microwave photons[J]. Quantummachines: measurement and control of engineered quantum systems, 2014: 113-256.
[6] LANGFORD N K. Circuit qed-lecture notes[J]. arXiv preprint arXiv:1310.1897, 2013.
[7] VANDERSYPEN L M, STEFFEN M, BREYTA G, et al. Experimental realization of Shor’squantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866):883-887.
[8] CIRAC J I, ZOLLER P. Goals and opportunities in quantum simulation[J]. Nature physics,2012, 8(4): 264-266.
[9] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum states ina single-Cooper-pair box[J]. nature, 1999, 398(6730): 786-788.
[10] FRIEDMAN J R, PATEL V, CHEN W, et al. Quantum superposition of distinct macroscopicstates[J]. nature, 2000, 406(6791): 43-46.
[11] DEVORET M H, WALLRAFF A, MARTINIS J M. Superconducting qubits: A short review[J]. arXiv preprint cond-mat/0411174, 2004.
[12] CLARKE J, WILHELM F K. Superconducting quantum bits[J]. Nature, 2008, 453(7198):1031-1042.
[13] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[14] VION D, AASSIME A, COTTET A, et al. Manipulating the quantum state of an electricalcircuit[J]. Science, 2002, 296(5569): 886-889.
[15] KOCH J, TERRI M Y, GAMBETTA J, et al. Charge-insensitive qubit design derived from theCooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[16] SCHREIER J, HOUCK A A, KOCH J, et al. Suppressing charge noise decoherence in super conducting charge qubits[J]. Physical Review B, 2008, 77(18): 180502.
[17] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fast tunablecoupling[J]. Physical review letters, 2014, 113(22): 220502.
[18] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surfacecode threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[19] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practicallarge-scale quantum computation[J]. Physical Review A, 2012, 86(3): 032324.
[20] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al. Characterizing quantum supremacy innear-term devices[J]. Nature Physics, 2018, 14(6): 595-600.
[21] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[22] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a supercon ducting quantum processor[J]. Physical review letters, 2021, 127(18): 180501.
[23] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of high coherence in Josephsonjunction qubits measured in a three-dimensional circuit QED architecture[J]. Physical ReviewLetters, 2011, 107(24): 240501.
[24] RIGETTI C, GAMBETTA J M, POLETTO S, et al. Superconducting qubit in a waveguidecavity with a coherence time approaching 0.1 ms[J]. Physical Review B, 2012, 86(10): 100506.
[25] PLACE A P, RODGERS L V, MUNDADA P, et al. New material platform for superconductingtransmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature communications,2021, 12(1): 1-6.
[26] MANUCHARYAN V E, KOCH J, GLAZMAN L I, et al. Fluxonium: Single cooper-pair circuitfree of charge offsets[J]. Science, 2009, 326(5949): 113-116.
[27] NGUYEN L B, LIN Y H, SOMOROFF A, et al. High-coherence fluxonium qubit[J]. PhysicalReview X, 2019, 9(4): 041041.
[28] MACKLIN C, O’BRIEN K, HOVER D, et al. A near–quantum-limited Josephson traveling wave parametric amplifier[J]. Science, 2015, 350(6258): 307-310.
[29] WALSH E D, JUNG W, LEE G H, et al. Josephson junction infrared single-photon detector[J].Science, 2021, 372(6540): 409-412.
[30] BIESINGER D, SCHELLER C, BRAUNECKER B, et al. Intrinsic metastabilities in the chargeconfiguration of a double quantum dot[J]. Physical review letters, 2015, 115(10): 106804.
[31] BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015.
[32] CHEN Z. Metrology of quantum control and measurement in superconducting qubits[M]. Uni versity of California, Santa Barbara, 2018.
[33] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelitytwo-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[34] CLARKE J, BRAGINSKI A I. The SQUID handbook: volume 1[M]. Wiley Online Library,2004.
[35] HUTCHINGS M, HERTZBERG J B, LIU Y, et al. Tunable superconducting qubits with flux independent coherence[J]. Physical Review Applied, 2017, 8(4): 044003.
[36] COHEN-TANNOUDJI C, DIU B, LALOE F. Quantum mechanics. Vol. 1. 4. rev. upd[J]. 2009.
[37] CARMICHAEL H. An open systems approach to quantum optics: lectures presented at theUniversité Libre de Bruxelles, October 28 to November 4, 1991: volume 18[M]. SpringerScience & Business Media, 2009.
[38] LANDAU L D, LIFSHITZ E M. Statistical Physics: Volume 5: volume 5[M]. Elsevier, 2013.
[39] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for super conducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[40] DING Y, GOKHALE P, LIN S F, et al. Systematic crosstalk mitigation for superconductingqubits via frequency-aware compilation[C]//2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020: 201-214.
[41] WENNER J, NEELEY M, BIALCZAK R C, et al. Wirebond crosstalk and cavity modes in largechip mounts for superconducting qubits[J]. Superconductor Science and Technology, 2011, 24(6): 065001.
[42] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunablecoupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[43] GAMBETTA J, HOUCK A A, BLAIS A. Superconducting qubit with Purcell protection andtunable coupling[J]. Physical review letters, 2011, 106(3): 030502.
[44] REED M D, JOHNSON B R, HOUCK A A, et al. Fast reset and suppressing spontaneousemission of a superconducting qubit[J]. Applied Physics Letters, 2010, 96(20): 203110.
[45] PATEL U, PECHENEZHSKIY I V, PLOURDE B, et al. Phonon-mediated quasiparticle poi soning of superconducting microwave resonators[J]. Physical Review B, 2017, 96(22): 220501.
[46] SERNIAK K, HAYS M, DE LANGE G, et al. Hot nonequilibrium quasiparticles in transmonqubits[J]. Physical review letters, 2018, 121(15): 157701.
[47] RAFFERTY O, PATEL S, LIU C, et al. Spurious antenna modes of the transmon qubit[J]. arXivpreprint arXiv:2103.06803, 2021.
[48] SONNETSOFTWARE. [EB/OL]. https://www.sonnetsoftware.com/.
[49] ANSYSHFSS. [EB/OL]. https://www.ansys.com/products/electronics/ansys-hfss.
[50] POZAR D M. Microwave engineering[M]. John wiley & sons, 2011.
[51] TANNER. [EB/OL]. http://www.tanner.com/eda.
[52] HEITZMANN. [EB/OL]. https://github.com/heitzmann/gdspy.
[53] YAN F, GUSTAVSSON S, KAMAL A, et al. The flux qubit revisited to enhance coherence andreproducibility[J]. Nature communications, 2016, 7(1): 1-9.
[54] GLAZMAN L, CATELANI G. Bogoliubov quasiparticles in superconducting qubits[J]. SciPostPhysics Lecture Notes, 2021: 031.
[55] CATELANI G, PEKOLA J P. Using materials for quasiparticle engineering[J]. Materials forQuantum Technology, 2022.
[56] CARDANI L, VALENTI F, CASALI N, et al. Reducing the impact of radioactivity on quantumcircuits in a deep-underground facility[J]. Nature communications, 2021, 12(1): 1-6.
[57] WILEN C D, ABDULLAH S, KURINSKY N, et al. Correlated charge noise and relaxationerrors in superconducting qubits[J]. Nature, 2021, 594(7863): 369-373.
[58] MCEWEN M, FAORO L, ARYA K, et al. Resolving catastrophic error bursts from cosmic raysin large arrays of superconducting qubits[J]. Nature Physics, 2022, 18(1): 107-111.
[59] VEPSÄLÄINEN A P, KARAMLOU A H, ORRELL J L, et al. Impact of ionizing radiation onsuperconducting qubit coherence[J]. Nature, 2020, 584(7822): 551-556.
[60] HOUZET M, SERNIAK K, CATELANI G, et al. Photon-assisted charge-parity jumps in asuperconducting qubit[J]. Physical review letters, 2019, 123(10): 107704.
[61] CATELANI G, KOCH J, FRUNZIO L, et al. Quasiparticle relaxation of superconducting qubitsin the presence of flux[J]. Physical review letters, 2011, 106(7): 077002.
[62] LENANDER M, WANG H, BIALCZAK R C, et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles[J]. Physical Review B, 2011, 84(2): 024501.
[63] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of high coherence in Josephsonjunction qubits measured in a three-dimensional circuit QED architecture[J]. Physical ReviewLetters, 2011, 107(24): 240501.
[64] POP I M, GEERLINGS K, CATELANI G, et al. Coherent suppression of electromagneticdissipation due to superconducting quasiparticles[J]. Nature, 2014, 508(7496): 369-372.
[65] HENRIQUES F, VALENTI F, CHARPENTIER T, et al. Phonon traps reduce the quasiparticledensity in superconducting circuits[J]. Applied physics letters, 2019, 115(21): 212601.
[66] GUSTAVSSON S, YAN F, CATELANI G, et al. Suppressing relaxation in superconductingqubits by quasiparticle pumping[J]. Science, 2016, 354(6319): 1573-1577.
[67] MANNILA E T, SAMUELSSON P, SIMBIEROWICZ S, et al. A superconductor free of quasi particles for seconds[J]. Nature Physics, 2022, 18(2): 145-148.
[68] RIWAR R P, HOSSEINKHANI A, BURKHART L D, et al. Normal-metal quasiparticle trapsfor superconducting qubits[J]. Physical Review B, 2016, 94(10): 104516.
[69] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[70] SERNIAK K, DIAMOND S, HAYS M, et al. Direct dispersive monitoring of charge parity inoffset-charge-sensitive transmons[J]. Physical Review Applied, 2019, 12(1): 014052.
[71] RIWAR R P, CATELANI G. Efficient quasiparticle traps with low dissipation through gapengineering[J]. Physical Review B, 2019, 100(14): 144514.
[72] DUNSWORTH A, MEGRANT A, QUINTANA C, et al. Characterization and reduction ofcapacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits[J]. Applied Physics Letters, 2017, 111(2): 022601.
[73] ROSENBERG D, KIM D, DAS R, et al. 3D integrated superconducting qubits[J]. npj quantuminformation, 2017, 3(1): 1-5.
[74] FOXEN B, MUTUS J, LUCERO E, et al. Qubit compatible superconducting interconnects[J].Quantum Science and Technology, 2017, 3(1): 014005.
[75] SATZINGER K, CONNER C, BIENFAIT A, et al. Simple non-galvanic flip-chip integrationmethod for hybrid quantum systems[J]. Applied Physics Letters, 2019, 114(17): 173501.
[76] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for supercon ducting electrical circuits: An architecture for quantum computation[J]. Physical Review A,2004, 69(6): 062320.
[77] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum states ina single-Cooper-pair box[J]. nature, 1999, 398(6730): 786-788.
[78] DUTY T, GUNNARSSON D, BLADH K, et al. Coherent dynamics of a Josephson charge qubit[J]. Physical Review B, 2004, 69(14): 140503.
[79] ASTAFIEV O, PASHKIN Y A, YAMAMOTO T, et al. Single-shot measurement of the Joseph son charge qubit[J]. Physical Review B, 2004, 69(18): 180507.
[80] KURTER C, MURRAY C, GORDON R, et al. Quasiparticle tunneling as a probe of Joseph son junction quality and capacitor material in superconducting qubits[J]. arXiv preprintarXiv:2106.11488, 2021.
[81] GORDON R, MURRAY C, KURTER C, et al. Environmental radiation impact on lifetimes andquasiparticle tunneling rates of fixed-frequency transmon qubits[J]. Applied Physics Letters,2022, 120(7): 074002.
[82] CHUBOV P, EREMENKO V, PILIPENKO Y A. Dependence of the critical temperature andenergy gap on the thickness of superconducting aluminum films[J]. SOV PHYS JETP, 1969, 28(3): 389-395.
[83] FERGUSON A, CLARK R, et al. Energy gap measurement of nanostructured aluminium thinfilms for single Cooper-pair devices[J]. Superconductor Science and Technology, 2007, 21(1):015013.
[84] NAKAMURA Y, TSAI J. Photon-assisted Cooper-pair tunneling in a superconducting single electron transistor[J]. Solid-State Electronics, 1998, 42(7-8): 1471-1475.
[85] RISTÈ D, BULTINK C, TIGGELMAN M, et al. Millisecond charge-parity fluctuations andinduced decoherence in a superconducting transmon qubit[J]. Nature communications, 2013, 4(1): 1-6.
[86] KRAUS J D. Antennas for All Applications[M]. McGraw-Hill Science, 2001.
[87] ORFANIDIS S J. Electromagnetic waves and antennas[J]. 2002.
[88] BALANIS C A. Advanced engineering electromagnetics[M]. John Wiley & Sons, 2012.
[89] CATELANI G. Parity switching and decoherence by quasiparticles in single-junction transmons[J]. Physical Review B, 2014, 89(9): 094522.
[90] PLACE A P, RODGERS L V, MUNDADA P, et al. New material platform for superconductingtransmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature communications,2021, 12(1): 1-6.
[91] WANG C, LI X, XU H, et al. Transmon qubit with relaxation time exceeding 0.5 milliseconds[J]. arXiv preprint arXiv:2105.09890, 2021.
[92] TENNANT D M, MARTINEZ L A, WILEN C D, et al. Low frequency correlated charge noisemeasurements across multiple energy transitions in a tantalum transmon[J]. arXiv preprintarXiv:2106.08406, 2021.
[93] VERBRUGH S, BENHAMADI M, VISSCHER E, et al. Optimization of island size in singleelectron tunneling devices: Experiment and theory[J]. Journal of applied physics, 1995, 78(4):2830-2836.
[94] ZIMMERLI G, EILES T M, KAUTZ R L, et al. Noise in the Coulomb blockade electrometer[J]. Applied Physics Letters, 1992, 61(2): 237-239.
[95] WANG C, GAO Y Y, POP I M, et al. Measurement and control of quasiparticle dynamics in asuperconducting qubit[J]. Nature communications, 2014, 5(1): 1-7.
[96] ZHAO R, PARK S, ZHAO T, et al. Merged-element transmon[J]. Physical Review Applied,2020, 14(6): 064006.
[97] MAMIN H, HUANG E, CARNEVALE S, et al. Merged-element transmons: Design and qubitperformance[J]. Physical Review Applied, 2021, 16(2): 024023.
[98] WANG J I, YAMOAH M A, LI Q, et al. Hexagonal boron nitride as a low-loss dielectric forsuperconducting quantum circuits and qubits[J]. Nature Materials, 2022: 1-6.
[99] MARTINIS J M. Saving superconducting quantum processors from decay and correlated errorsgenerated by gamma and cosmic rays[J]. npj Quantum Information, 2021, 7(1): 1-9.
修改评论