中文版 | English
题名

超导量子计算芯片制备及功能测试

其他题名
FABRICATION AND MEASUREMENT OF SUPERCONDUCTING QUANTUM COMPUTING CHIP
姓名
姓名拼音
PAN Xianchuang
学号
11930018
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
李剑
导师单位
量子科学与工程研究院;量子科学与工程研究院
论文答辩日期
2022-05-11
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

无论对于哪种类型的量子比特,要想实现通用量子计算就得准确识别并抑制影响量子比特退相干的因素。基于约瑟夫森结,我们可以灵活的设计量子比特的参数。但是这种超导量子比特将不可避免的遭受一种叫准粒子的噪声的影响。在超导量子比特中,我们把被破坏的库珀对称为准粒子。实验已经证明,实际器件中的准粒子密度远大于理论预测。因此,在如今多量子比特集成的趋势下,需要对非平衡态准粒子的产生机制有更深刻的理解,以进一步抑制准粒子的影响。该论文中,我们实验上研究了如何通过控制量子比特的几何结构来控制芯片上准粒子的产生。实验中我们可以把由于准粒子隧穿引起的电荷宇称转变速率压制到 1 Hz 以下。同时,我们的样品还进一步提升了电荷稳定性。我们的实验结果可以由超导量子比特天线模型理论进行解释,并据此模型,我们设计出了一种易设计、可扩展的 3D 超导量子比特样品。在这种样品上,准粒子的产生会被极大的抑制,对提升量子比特退相干,实现容错量子计算具有重要意义。

其他摘要

In any physical realization of a qubit, identifying, quantifying, and suppressing mechanisms of decoherence are important steps towards the goal of engineering a universal quantum computer or a quantum simulator. Superconducting circuits based on Josephson junctions offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs) whose density, as observed in various systems, is considerably higher than that expected in thermal equilibrium. A full understanding of the generation mechanism and a mitigation strategy that is compatible with scalable, high-coherence devices are therefore highly desirable. Here we experimentally demonstrate how to control quasiparticle generation by downsizing the qubit structure, capping it with a metallic cover, and equipping it with suitable quasiparticle traps. We achieve record low charge-parity switching rate (< 1 Hz) in our aluminium devices. At the same time, the devices display improved stability with respect to discrete charging events. Our findings support the hypothesis that the generation of quasiparticles is dominated by the breaking of Cooper pairs at the junction, as a result of photon absorption mediated by the antenna-like qubit structure. We thus demonstrate a convenient approach to shape the electromagnetic environment of superconducting circuits in the sub-terahertz regime, inhibiting decoherence from quasiparticle poisoning.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SEIDEL P. Applied superconductivity: handbook on devices and applications[M]. John Wiley& Sons, 2015.
[2] ONNES M H, LEIDEN C, ONNES H K. What are superconductors[J]. Renewable and Sus tainable Energy Reviews, 2016, 55: 59-72.
[3] HUANG S, LIENHARD B, CALUSINE G, et al. Microwave package design for superconduct ing quantum processors[J]. PRX Quantum, 2021, 2(2): 020306.
[4] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J]. Physicalreview, 1957, 108(5): 1175.
[5] GIRVIN S M. Circuit QED: superconducting qubits coupled to microwave photons[J]. Quantummachines: measurement and control of engineered quantum systems, 2014: 113-256.
[6] LANGFORD N K. Circuit qed-lecture notes[J]. arXiv preprint arXiv:1310.1897, 2013.
[7] VANDERSYPEN L M, STEFFEN M, BREYTA G, et al. Experimental realization of Shor’squantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866):883-887.
[8] CIRAC J I, ZOLLER P. Goals and opportunities in quantum simulation[J]. Nature physics,2012, 8(4): 264-266.
[9] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum states ina single-Cooper-pair box[J]. nature, 1999, 398(6730): 786-788.
[10] FRIEDMAN J R, PATEL V, CHEN W, et al. Quantum superposition of distinct macroscopicstates[J]. nature, 2000, 406(6791): 43-46.
[11] DEVORET M H, WALLRAFF A, MARTINIS J M. Superconducting qubits: A short review[J]. arXiv preprint cond-mat/0411174, 2004.
[12] CLARKE J, WILHELM F K. Superconducting quantum bits[J]. Nature, 2008, 453(7198):1031-1042.
[13] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[14] VION D, AASSIME A, COTTET A, et al. Manipulating the quantum state of an electricalcircuit[J]. Science, 2002, 296(5569): 886-889.
[15] KOCH J, TERRI M Y, GAMBETTA J, et al. Charge-insensitive qubit design derived from theCooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[16] SCHREIER J, HOUCK A A, KOCH J, et al. Suppressing charge noise decoherence in super conducting charge qubits[J]. Physical Review B, 2008, 77(18): 180502.
[17] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fast tunablecoupling[J]. Physical review letters, 2014, 113(22): 220502.
[18] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surfacecode threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[19] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practicallarge-scale quantum computation[J]. Physical Review A, 2012, 86(3): 032324.
[20] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al. Characterizing quantum supremacy innear-term devices[J]. Nature Physics, 2018, 14(6): 595-600.
[21] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[22] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a supercon ducting quantum processor[J]. Physical review letters, 2021, 127(18): 180501.
[23] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of high coherence in Josephsonjunction qubits measured in a three-dimensional circuit QED architecture[J]. Physical ReviewLetters, 2011, 107(24): 240501.
[24] RIGETTI C, GAMBETTA J M, POLETTO S, et al. Superconducting qubit in a waveguidecavity with a coherence time approaching 0.1 ms[J]. Physical Review B, 2012, 86(10): 100506.
[25] PLACE A P, RODGERS L V, MUNDADA P, et al. New material platform for superconductingtransmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature communications,2021, 12(1): 1-6.
[26] MANUCHARYAN V E, KOCH J, GLAZMAN L I, et al. Fluxonium: Single cooper-pair circuitfree of charge offsets[J]. Science, 2009, 326(5949): 113-116.
[27] NGUYEN L B, LIN Y H, SOMOROFF A, et al. High-coherence fluxonium qubit[J]. PhysicalReview X, 2019, 9(4): 041041.
[28] MACKLIN C, O’BRIEN K, HOVER D, et al. A near–quantum-limited Josephson traveling wave parametric amplifier[J]. Science, 2015, 350(6258): 307-310.
[29] WALSH E D, JUNG W, LEE G H, et al. Josephson junction infrared single-photon detector[J].Science, 2021, 372(6540): 409-412.
[30] BIESINGER D, SCHELLER C, BRAUNECKER B, et al. Intrinsic metastabilities in the chargeconfiguration of a double quantum dot[J]. Physical review letters, 2015, 115(10): 106804.
[31] BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015.
[32] CHEN Z. Metrology of quantum control and measurement in superconducting qubits[M]. Uni versity of California, Santa Barbara, 2018.
[33] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelitytwo-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[34] CLARKE J, BRAGINSKI A I. The SQUID handbook: volume 1[M]. Wiley Online Library,2004.
[35] HUTCHINGS M, HERTZBERG J B, LIU Y, et al. Tunable superconducting qubits with flux independent coherence[J]. Physical Review Applied, 2017, 8(4): 044003.
[36] COHEN-TANNOUDJI C, DIU B, LALOE F. Quantum mechanics. Vol. 1. 4. rev. upd[J]. 2009.
[37] CARMICHAEL H. An open systems approach to quantum optics: lectures presented at theUniversité Libre de Bruxelles, October 28 to November 4, 1991: volume 18[M]. SpringerScience & Business Media, 2009.
[38] LANDAU L D, LIFSHITZ E M. Statistical Physics: Volume 5: volume 5[M]. Elsevier, 2013.
[39] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for super conducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[40] DING Y, GOKHALE P, LIN S F, et al. Systematic crosstalk mitigation for superconductingqubits via frequency-aware compilation[C]//2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020: 201-214.
[41] WENNER J, NEELEY M, BIALCZAK R C, et al. Wirebond crosstalk and cavity modes in largechip mounts for superconducting qubits[J]. Superconductor Science and Technology, 2011, 24(6): 065001.
[42] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunablecoupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[43] GAMBETTA J, HOUCK A A, BLAIS A. Superconducting qubit with Purcell protection andtunable coupling[J]. Physical review letters, 2011, 106(3): 030502.
[44] REED M D, JOHNSON B R, HOUCK A A, et al. Fast reset and suppressing spontaneousemission of a superconducting qubit[J]. Applied Physics Letters, 2010, 96(20): 203110.
[45] PATEL U, PECHENEZHSKIY I V, PLOURDE B, et al. Phonon-mediated quasiparticle poi soning of superconducting microwave resonators[J]. Physical Review B, 2017, 96(22): 220501.
[46] SERNIAK K, HAYS M, DE LANGE G, et al. Hot nonequilibrium quasiparticles in transmonqubits[J]. Physical review letters, 2018, 121(15): 157701.
[47] RAFFERTY O, PATEL S, LIU C, et al. Spurious antenna modes of the transmon qubit[J]. arXivpreprint arXiv:2103.06803, 2021.
[48] SONNETSOFTWARE. [EB/OL]. https://www.sonnetsoftware.com/.
[49] ANSYSHFSS. [EB/OL]. https://www.ansys.com/products/electronics/ansys-hfss.
[50] POZAR D M. Microwave engineering[M]. John wiley & sons, 2011.
[51] TANNER. [EB/OL]. http://www.tanner.com/eda.
[52] HEITZMANN. [EB/OL]. https://github.com/heitzmann/gdspy.
[53] YAN F, GUSTAVSSON S, KAMAL A, et al. The flux qubit revisited to enhance coherence andreproducibility[J]. Nature communications, 2016, 7(1): 1-9.
[54] GLAZMAN L, CATELANI G. Bogoliubov quasiparticles in superconducting qubits[J]. SciPostPhysics Lecture Notes, 2021: 031.
[55] CATELANI G, PEKOLA J P. Using materials for quasiparticle engineering[J]. Materials forQuantum Technology, 2022.
[56] CARDANI L, VALENTI F, CASALI N, et al. Reducing the impact of radioactivity on quantumcircuits in a deep-underground facility[J]. Nature communications, 2021, 12(1): 1-6.
[57] WILEN C D, ABDULLAH S, KURINSKY N, et al. Correlated charge noise and relaxationerrors in superconducting qubits[J]. Nature, 2021, 594(7863): 369-373.
[58] MCEWEN M, FAORO L, ARYA K, et al. Resolving catastrophic error bursts from cosmic raysin large arrays of superconducting qubits[J]. Nature Physics, 2022, 18(1): 107-111.
[59] VEPSÄLÄINEN A P, KARAMLOU A H, ORRELL J L, et al. Impact of ionizing radiation onsuperconducting qubit coherence[J]. Nature, 2020, 584(7822): 551-556.
[60] HOUZET M, SERNIAK K, CATELANI G, et al. Photon-assisted charge-parity jumps in asuperconducting qubit[J]. Physical review letters, 2019, 123(10): 107704.
[61] CATELANI G, KOCH J, FRUNZIO L, et al. Quasiparticle relaxation of superconducting qubitsin the presence of flux[J]. Physical review letters, 2011, 106(7): 077002.
[62] LENANDER M, WANG H, BIALCZAK R C, et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles[J]. Physical Review B, 2011, 84(2): 024501.
[63] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of high coherence in Josephsonjunction qubits measured in a three-dimensional circuit QED architecture[J]. Physical ReviewLetters, 2011, 107(24): 240501.
[64] POP I M, GEERLINGS K, CATELANI G, et al. Coherent suppression of electromagneticdissipation due to superconducting quasiparticles[J]. Nature, 2014, 508(7496): 369-372.
[65] HENRIQUES F, VALENTI F, CHARPENTIER T, et al. Phonon traps reduce the quasiparticledensity in superconducting circuits[J]. Applied physics letters, 2019, 115(21): 212601.
[66] GUSTAVSSON S, YAN F, CATELANI G, et al. Suppressing relaxation in superconductingqubits by quasiparticle pumping[J]. Science, 2016, 354(6319): 1573-1577.
[67] MANNILA E T, SAMUELSSON P, SIMBIEROWICZ S, et al. A superconductor free of quasi particles for seconds[J]. Nature Physics, 2022, 18(2): 145-148.
[68] RIWAR R P, HOSSEINKHANI A, BURKHART L D, et al. Normal-metal quasiparticle trapsfor superconducting qubits[J]. Physical Review B, 2016, 94(10): 104516.
[69] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[70] SERNIAK K, DIAMOND S, HAYS M, et al. Direct dispersive monitoring of charge parity inoffset-charge-sensitive transmons[J]. Physical Review Applied, 2019, 12(1): 014052.
[71] RIWAR R P, CATELANI G. Efficient quasiparticle traps with low dissipation through gapengineering[J]. Physical Review B, 2019, 100(14): 144514.
[72] DUNSWORTH A, MEGRANT A, QUINTANA C, et al. Characterization and reduction ofcapacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits[J]. Applied Physics Letters, 2017, 111(2): 022601.
[73] ROSENBERG D, KIM D, DAS R, et al. 3D integrated superconducting qubits[J]. npj quantuminformation, 2017, 3(1): 1-5.
[74] FOXEN B, MUTUS J, LUCERO E, et al. Qubit compatible superconducting interconnects[J].Quantum Science and Technology, 2017, 3(1): 014005.
[75] SATZINGER K, CONNER C, BIENFAIT A, et al. Simple non-galvanic flip-chip integrationmethod for hybrid quantum systems[J]. Applied Physics Letters, 2019, 114(17): 173501.
[76] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for supercon ducting electrical circuits: An architecture for quantum computation[J]. Physical Review A,2004, 69(6): 062320.
[77] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum states ina single-Cooper-pair box[J]. nature, 1999, 398(6730): 786-788.
[78] DUTY T, GUNNARSSON D, BLADH K, et al. Coherent dynamics of a Josephson charge qubit[J]. Physical Review B, 2004, 69(14): 140503.
[79] ASTAFIEV O, PASHKIN Y A, YAMAMOTO T, et al. Single-shot measurement of the Joseph son charge qubit[J]. Physical Review B, 2004, 69(18): 180507.
[80] KURTER C, MURRAY C, GORDON R, et al. Quasiparticle tunneling as a probe of Joseph son junction quality and capacitor material in superconducting qubits[J]. arXiv preprintarXiv:2106.11488, 2021.
[81] GORDON R, MURRAY C, KURTER C, et al. Environmental radiation impact on lifetimes andquasiparticle tunneling rates of fixed-frequency transmon qubits[J]. Applied Physics Letters,2022, 120(7): 074002.
[82] CHUBOV P, EREMENKO V, PILIPENKO Y A. Dependence of the critical temperature andenergy gap on the thickness of superconducting aluminum films[J]. SOV PHYS JETP, 1969, 28(3): 389-395.
[83] FERGUSON A, CLARK R, et al. Energy gap measurement of nanostructured aluminium thinfilms for single Cooper-pair devices[J]. Superconductor Science and Technology, 2007, 21(1):015013.
[84] NAKAMURA Y, TSAI J. Photon-assisted Cooper-pair tunneling in a superconducting single electron transistor[J]. Solid-State Electronics, 1998, 42(7-8): 1471-1475.
[85] RISTÈ D, BULTINK C, TIGGELMAN M, et al. Millisecond charge-parity fluctuations andinduced decoherence in a superconducting transmon qubit[J]. Nature communications, 2013, 4(1): 1-6.
[86] KRAUS J D. Antennas for All Applications[M]. McGraw-Hill Science, 2001.
[87] ORFANIDIS S J. Electromagnetic waves and antennas[J]. 2002.
[88] BALANIS C A. Advanced engineering electromagnetics[M]. John Wiley & Sons, 2012.
[89] CATELANI G. Parity switching and decoherence by quasiparticles in single-junction transmons[J]. Physical Review B, 2014, 89(9): 094522.
[90] PLACE A P, RODGERS L V, MUNDADA P, et al. New material platform for superconductingtransmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature communications,2021, 12(1): 1-6.
[91] WANG C, LI X, XU H, et al. Transmon qubit with relaxation time exceeding 0.5 milliseconds[J]. arXiv preprint arXiv:2105.09890, 2021.
[92] TENNANT D M, MARTINEZ L A, WILEN C D, et al. Low frequency correlated charge noisemeasurements across multiple energy transitions in a tantalum transmon[J]. arXiv preprintarXiv:2106.08406, 2021.
[93] VERBRUGH S, BENHAMADI M, VISSCHER E, et al. Optimization of island size in singleelectron tunneling devices: Experiment and theory[J]. Journal of applied physics, 1995, 78(4):2830-2836.
[94] ZIMMERLI G, EILES T M, KAUTZ R L, et al. Noise in the Coulomb blockade electrometer[J]. Applied Physics Letters, 1992, 61(2): 237-239.
[95] WANG C, GAO Y Y, POP I M, et al. Measurement and control of quasiparticle dynamics in asuperconducting qubit[J]. Nature communications, 2014, 5(1): 1-7.
[96] ZHAO R, PARK S, ZHAO T, et al. Merged-element transmon[J]. Physical Review Applied,2020, 14(6): 064006.
[97] MAMIN H, HUANG E, CARNEVALE S, et al. Merged-element transmons: Design and qubitperformance[J]. Physical Review Applied, 2021, 16(2): 024023.
[98] WANG J I, YAMOAH M A, LI Q, et al. Hexagonal boron nitride as a low-loss dielectric forsuperconducting quantum circuits and qubits[J]. Nature Materials, 2022: 1-6.
[99] MARTINIS J M. Saving superconducting quantum processors from decay and correlated errorsgenerated by gamma and cosmic rays[J]. npj Quantum Information, 2021, 7(1): 1-9.

所在学位评定分委会
量子科学与工程研究院
国内图书分类号
O459
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336366
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
潘先闯. 超导量子计算芯片制备及功能测试[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930018-潘先闯-量子科学与工程(20323KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[潘先闯]的文章
百度学术
百度学术中相似的文章
[潘先闯]的文章
必应学术
必应学术中相似的文章
[潘先闯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。