中文版 | English
题名

WC-Ti体系硬质合金激光3D打印成形工艺及性能研究

其他题名
RESEARCH ON PROCESSING AND PERFORMANCE OF TUNGSTEN CARBIDE-TITANIUM HARD ALLOY BY LASER-BASED 3D PRINTING
姓名
姓名拼音
SA Bo
学号
11930239
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
严明
导师单位
材料科学与工程系
论文答辩日期
2022-05-05
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

传统的硬质合金加工通常需要经过混合料制备、压坯成型、烧结三个过程来完成。选区激光熔化作为一种先进的三维加工技术,具有自由度高、成形材料广泛、材料利用率高及加工周期短等特点。可利用选区激光熔化技术来制备硬质合金,以便发挥其先进制造方面的独特优势。

目前适用于碳化钨硬质合金的各种粘结金属存在着各自的问题,对于新型粘结金属的探索十分必要。纯钛作为一种有着优良性能、诸多优点的金属材料,有望作为适合的粘结金属添加到碳化钨基体中来制备硬质合金。

本论文以新型粘结金属的探索为出发点,利用激光选区熔化技术,在对打印工艺参数进行优化之后,制备出了高密度、高硬度、高抗压强度及良好的耐磨耐蚀性的硬质合金试样,并打印成型了碳化钨—钛体系硬质合金的饰品异形构件。

本硕士论文得出了以下主要研究结论:

(1) 实验结果表明纯钛可作为碳化钨的有效粘结剂,并且可采用激光原位化方法对钛含量分别为10 wt.%,15 wt.%,20 wt.%的碳化钨—钛体系的硬质合金进行高质量打印成型。

(2) 20 wt.%纯钛粘结剂含量下的碳化钨—钛硬质合金的可打印性最优。在功率为175 W、扫描速度为600 mm·s-1的条件下,该成分下的打印态碳化钨—钛硬质合金的致密度高达99.62 %,室温硬度可达1476±50 HV1,压缩强度达1.75 GPa,在人体汗液环境下的耐腐蚀速率为0.1986 mm·a-1,摩擦系数约为0.816。同时该材料呈现较好的高温稳定性。

(3) 微观组织分析表明,含20 wt.%钛的打印态碳化钨—钛硬质合金组织由碳化钨、碳化二钨、碳化钛等五种晶体相组成。其微观组织呈现晶粒尺寸小、晶体相之间结合优良等特点,与所展现的高性能表现相符。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] LIU X, LIU X, LU H, et al. Low-energy Grain Boundaries in WC-Co Cemented Carbides[J]. Acta Materialia, 2019, 175: 171-181.
[2] LIU X, SONG X, WANG H, et al. Complexions in WC-Co Cemented Carbides[J]. Acta Materialia, 2018, 149: 164-178.
[3] FURBERG A, FRANSSON K, ZACKRISSON M, et al. Environmental and Resource Aspects of Substituting Cemented Carbide with Polycrystalline Diamond: The Case of Machining Tools[J]. Journal of Cleaner Production, 2020, 277: 123577.
[4] KE Z, ZHENG Y, ZHANG G, et al. Microstructure and Mechanical Properties of Dual-grain Structured WC-Co Cemented Carbides[J]. Ceramics International, 2019, 45(17): 21528-21533.
[5] ZHANG H, XIONG J, GUO Z, et al. Microstructure, Mechanical Properties, and Cutting Performances of WC-Co Cemented Carbides with Ru Additions[J]. Ceramics International, 2021, 47(18): 26050-26062.
[6] GARCIA J, CIPRES V C, BLOMQVIST A, et al. Cemented Carbide Microstructures: A Review[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 40-68.
[7] ARAMIAN A, RAZAVI S M J, SADEGHIAN Z, et al. A Review of Additive Manufacturing of Cermets[J]. Additive Manufacturing, 2020, 33: 101130.
[8] ZHANG D, QIU D, GIBSON M A, et al. Additive Manufacturing of Ultrafine-grained High-strength Titanium Alloys[J]. Nature, 2019, 576(7785): 91-95.
[9] GU D, SHI X, POPRAWE R, et al. Material-structure-performance Integrated Laser-metal Additive Manufacturing[J]. Science, 2021, 372(6545): eabg1487.
[10] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal Additive Manufacturing in Aerospace: A Review[J]. Materials & Design, 2021, 209: 110008.
[11] LI N, HUANG S, ZHANG G, et al. Progress in Additive Manufacturing on New Materials: A Review[J]. Journal of Materials Science & Technology, 2019, 35(2): 242-269.
[12] MOHAMMED A, ELSHAER A, SAREH P, et al. Additive Manufacturing Technologies for Drug Delivery Applications[J]. International Journal of Pharmaceutics, 2020, 580: 119245.
[13] WU B, PAN Z, DING D, et al. A Review of The Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement[J]. Journal of Manufacturing Processes, 2018, 35: 127-139.
[14] RYAN K R, DOWN M P, BANKS C E. Future of Additive Manufacturing: Overview of 4D and 3D Printed Smart and Advanced Materials and Their Applications[J]. Chemical Engineering Journal, 2021, 403: 126162.
[15] BERMINGHAM M J, STJOHN D H, KRYNEN J, et al. Promoting the Columnar to Equiaxed Transition and Grain Refinement of Titanium Alloys During Additive Manufacturing[J]. Acta Materialia, 2019, 168: 261-274.
[16] SPRIGGS G E. A History of Fine Grained Hardmetal[J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(15):241-255.
[17] GILLE G, BREDTHAUER J, GRIES B, et al. Advanced and New Grades of WC and Binder Powder-their Properties and Application[J]. International Journal of Refractory Metals & Hard Materials, 2000, 18(2-3): 87-102.
[18] BOSE A. Hardmetals: Past, Present, and Future[J]. International Journal of Powder Metallurgy, 2007, 43(2):17-19.
[19] YAO Z, STIGLICH J, SUDARSHAN T S. WC-Co Enjoys Proud History and Bright Future[J]. Metal Powder Report, 1998, 53(2): 32-36.
[20] GILLE G, SZESNY B, DREYER K, et al. Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(1): 3-22.
[21] BROOKES K J A. Half A Century of Hardmetals[J]. Metal Powder Report, 1995, 50(12): 22-28.
[22] KURLOV A S, GUSEV A I. Tungsten Carbides: Structure, Properties, and Application in Hardmetals[M]. Tungsten Carbides: Structure, Properties, and Application in Hardmetals, 2013:06-10.
[23] 羊建高,谭敦强,陈颢.硬质合金[M].湖南:中南大学出版社, 2012:05-06.
[24] 王国栋编.硬质合金生产原理[M].北京:冶金工业出版社, 1988:35-36.
[25] 李沐山.硬质合金新型粘结金属[J].粉体冶金技术, 1993, 11(2):136-144.
[26] 邹芹,张萌蕾,李艳国,等.金属陶瓷结合剂WC硬质合金研究进展与展望[J].中南大学学报:自然科学版, 2020, 51(11): 3044-3053.
[27] 羊求民,羊建高,陈丽勇,等.硬质合金粘结相研究进展[J].稀有金属与硬质合金, 2019, 47(2):82-86.
[28] 龙坚战,陆必志,易茂中,等.新型粘结相硬质合金的研究进展[J].硬质合金, 2015 (3): 204-212.
[29] 王鹏,时凯华,顾金宝,等.不同粘结相碳化钨基硬质合金的研究与应用 (Ⅰ)[J]. 硬质合金, 2020, 37(1):74-89.
[30] 王鹏,时凯华,顾金宝,等.不同粘结相碳化钨基硬质合金的研究与应用 (Ⅱ)[J]. 硬质合金, 2020, 37(2):152-169.
[31] 金亚琴,潘亚飞,杨新宇,等.双晶WC硬质合金的放电等离子烧结制备与性能研究[J].硬质合金, 2019, 36(2):99-108.
[32] 文彦,张钦英,郭圣达,等.WC-6Co硬质合金SPS烧结工艺[J].有色金属科学与工程, 2017, 8(3):74-78.
[33] HUANG B, CHEN L D, BAI S Q. Bulk Ultrafine Binderless WC Prepared by Spark Plasma Sintering[J]. Scripta Materialia, 2006, 54(3): 441-445.
[34] WANG B, WANG Z, YIN Z, et al. Effects of Powder Preparation and Sintering Temperature on Consolidation of Ultrafine WC-8Co Tool Material Produced by Spark Plasma Sintering[J]. Ceramics International, 2019, 45(16):19737-19746.
[35] LIU X, SONG X, ZHANG J, et al. Temperature Distribution and Neck Formation of WC–Co Combined Particles During Spark Plasma Sintering[J]. Materials Science and Engineering: A, 2008, 488(1-2): 1-7.
[36] 程吉平,刘先钧,傅文斌,等.精细陶瓷材料的微波烧结[J].全国微波会议论文集, 1991:1177-1184.
[37] AGRAWAL D, CHENG J, SEEGOPAUL P, et al. Grain Growth Control in Microwave Sintering of Ultrafine WC-Co Composite Powder Compacts[J]. Powder Metallurgy, 2000, 43(1): 15-16.
[38] CHENG J, AGRAWAL D K, KOMARNENI S, et al. Microwave Processing of WC-Co Composites and Ferroic Titanates[J]. Materials Research Innovations, 1997, 1(1): 44-52.
[39] RO K, DREYER K, GERDES T, et al. Microwave Sintering of Hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(4-6): 409-416.
[40] SUNIL B R, SIVAPRAHASAM D, SUBASRI R. Microwave Sintering of Nanocrystalline WC–12Co: Challenges and Perspectives[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(2): 180-186.
[41] ARAVINDAN S, RAMKUMAR J, MALHOTRA S K, et al. Enhancement of Cutting Performance of Cemented Carbide Cutting Tools by Microwave Treatment[J]. Microwave Solutions for Ceramic Engineers. Ohio: The American Ceramic Society, 2005: 255-262.
[42] RAMKUMAR J, ARAVINDAN S, MALHOTRA S K, et al. Enhancing The Metallurgical Properties of WC Insert (K-20) Cutting Tool Through Microwave Treatment[J]. Materials Letters, 2002, 53(3): 200-204.
[43] RAMKUMAR J, MALHOTRA S K, KRISHNAMURTHY R. Effect of Microwave Treatment on WC Inserts for Drilling of GFRP Composites[J]. Machining Science and Technology, 2005, 9(2):263-269.
[44] 周建,全峰,刘伟波,等.微波单模腔烧结WC-10Co硬质合金的研究[J].武汉理工大学学报, 2007, 29(12): 1-4.
[45] LIN W, BAI X D, LING Y H, et al. Fabrication and Properties of Axisymmetric WC/Co Functionally Graded Hard Metal Via Microwave Sintering[J]. Materials Science Forum, 2003, 423-426:55-58.
[46] 周建,全峰,刘伟波,等.微波烧结WC-10Co硬质合金的工艺研究[J].建材世界, 2007, 028(005):40-42.
[47] 史晓亮,杨华,邵刚勤,等.微波烧结法制备WC-10Co硬质合金[J].微波烧结法制备WC-10Co硬质合金.中南大学学报(自然科学版), 2006, 37(4):665-669.
[48] BREVAL E, CHENG J P, AGRAWAL O K. Comparison Between Microwave and Conventional Sintering of WC/Co Composites[J]. Materials Science & Engineering A, 2005, 391(1-2): 285-295.
[49] SHAHRUBUDIN N, LEE T C, RAMLAN R. An Overview on 3D Printing Technology: Technological, Materials, and Applications[J]. Procedia Manufacturing, 2019, 35: 1286-1296.
[50] HALEEM A, JAVAID M. Additive Manufacturing Applications in Industry 4.0: A Review[J]. Journal of Industrial Integration and Management, 2019, 4(04): 1930001.
[51] SUN C, WANG Y, MCMURTREY M D, et al. Additive Manufacturing for Energy: A Review[J]. Applied Energy, 2021, 282: 116041.
[52] PLOCHER J, PANESAR A. Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-generation Lightweight Structures[J]. Materials & Design, 2019, 183: 108164.
[53] ZHANG J, SONG B, WEI Q, et al. A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
[54] WANG X C, LAOUI T, BONSE J, et al. Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(5): 351-357.
[55] GU D, SHEN Y. WC–Co Particulate Reinforcing Cu Matrix Composites Produced by Direct Laser Sintering[J]. Materials Letters, 2006, 60(29-30):3664-3668.
[56] XIONG Y, SMUGERESKY J E, AJDELSZTAJN L, et al. Fabrication of WC–Co Cermets by Laser Engineered Net Shaping[J]. Materials Science & Engineering A, 2008, 493(1-2): 261-266.
[57] GU D, SHEN Y. Direct Laser Sintered WC-10Co/Cu Nanocomposites[J]. Applied Surface Science, 2008, 254(13): 3971-3978.
[58] KUMAR S. Manufacturing of WC–Co Moulds Using SLS Machine[J]. Journal of Materials Processing Technology, 2009, 209(8): 3840-3848.
[59] GU D, MEINERS W. Microstructure Characteristics and Formation Mechanisms of In-situ WC Cemented Carbide Based Hardmetals Prepared by Selective Laser Melting[J]. Materials Science and Engineering: A, 2010, 527(29–30): 7585-7592.
[60] UHLMANN E, BERGMANN A, GRIDIN W. Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting[J]. Procedia CIRP, 2015, 35: 8-15.
[61] KUMAR S. Process Chain Development for Additive Manufacturing of Cemented Carbide[J]. Journal of Manufacturing Processes, 2018, 34(8): 121-130.
[62] LI C W, CHANG K C, YEH A C. On The Microstructure and Properties of An Advanced Cemented Carbide System Processed by Selective Laser Melting[J]. Journal of Alloys and Compounds, 2019, 782: 440-450.
[63] ZHU W, ZHAO C, ZHANG Y, et al. Achieving Exceptional Wear Resistance in A Compositionally Complex Alloy Via Tuning the Interfacial Structure and Chemistry[J]. Acta Materialia, 2020, 188: 697-710.
[64] 史玉升,闫春泽,周燕,等. 3D打印材料(下册)[M].湖北:华中科技大学出版社, 2019:309-312.
[65] NGUYEN Q, LUU D, NAI S, et al. The Role of Powder Layer Thickness on The Quality of SLM Printed Parts[J]. Archives of Civil and Mechanical Engineering, 2018, 18(3): 948-955.
[66] GUO M, GU D, XI L, et al. Selective Laser Melting Additive Manufacturing of Pure Tungsten: Role of Volumetric Energy Density on Densification, Microstructure and Mechanical Properties[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105025.
[67] ZHANG L C, ATTAR H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review[J]. Advanced Engineering Materials, 2016, 18(4): 463-475.
[68] HAN J, DUAN W, MAO Y, et al. Comparison of Laser Power and Scan Speed in SLM[J]. ISIJ International, 2022, 62(1): 200-208.
[69] GUO C, XU Z, ZHOU Y, et al. Single-track Investigation of IN738LC Superalloy Fabricated by Laser Powder Bed Fusion: Track Morphology, Bead Characteristics and Part Quality[J]. Journal of Materials Processing Technology, 2021, 290: 117000.
[70] SON S, PARK J M, PARK S H, et al. Correlation Between Microstructural Heterogeneity and Mechanical Properties of WC-Co Composite Additively Manufactured by Selective Laser Melting[J]. Materials Letters, 2021, 293: 129683.
[71] QIU Y, WU J, CHEN A, et al. Balling Phenomenon and Cracks in Alumina Ceramics Prepared by Direct Selective Laser Melting Assisted With Pressure Treatment[J]. Ceramics International, 2020, 46(9): 13854-13861.
[72] ENNETI R K, MORGAN R, ATRE S V. Effect of Process Parameters on The Selective Laser Melting (SLM) of Tungsten[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 315-319.
[73] DONG Y, LI Y, ZHOU S, et al. Cost-affordable Ti-6Al-4V for Additive Manufacturing: Powder Modification, Compositional Modulation and Laser In-situ Alloying[J]. Additive Manufacturing, 2021, 37: 101699.
[74] 中国国家标准化管理委员会.硬质合金维氏硬度试验方法.GB/T 7997-2014.中国标准书号[S].北京:中国标准出版社,1986.
[75] LIU X, HOU C, LU H, et al. Investigation on Plastic Deformation Mechanism of Ultra-coarse Cemented Carbide Based on Energy Analysis[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88: 105177.
[76] SU W, ZOU J, SUN L. Effects of Nano-alumina on Mechanical Properties and Wear Resistance of WC-8Co Cemented Carbide by Spark Plasma Sintering[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105337.
[77] GUO S, YAN W, YI J, et al. The Optimization of Mechanical Property and Corrosion Resistance of WC-6Co Cemented Carbide by Mo2C Content[J]. Ceramics International, 2020, 46(11): 17243-17251.
[78] MOHAZZAB B F, JALEH B, KAKUEE O, et al. Formation of Titanium Carbide on The Titanium Surface Using Laser Ablation in N-heptane and Investigating Its Corrosion Resistance[J]. Applied Surface Science, 2019, 478: 623-635.
[79] LI C-W, CHANG K-C, YEH A-C, et al. Microstructure Characterization of Cemented Carbide Fabricated by Selective Laser Melting Process[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 225-233.
[80] CHEN J, HUANG M, FANG Z, et al. Microstructure Analysis of High Density WC-Co Composite Prepared by One Step Selective Laser Melting[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 104980.
[81] LIU J, CHEN J, LIU B, et al. Microstructure Evolution of WC-20Co Cemented Carbide During Direct Selective Laser Melting[J]. Powder Metallurgy, 2020:1-8.
[82] LIU J, CHEN J, ZHOU L, et al. Role of Co Content on Densification and Microstructure of WC–Co Cemented Carbides Prepared by Selective Laser Melting[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9):1245-1254.
[83] 龙雨,黄玮,郭兴,等.非传统激光束激光选区熔化3D打印的研究现状及展望[J].航空制造技术, 2022,65(1-2):34–48.
[84] 黄建军,邵中魁,何朝辉,等.激光选区熔化增材制造激光束光路系统优化研究[J].精密制造与自动化, 2020 (1): 31-34.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336367
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
撒波. WC-Ti体系硬质合金激光3D打印成形工艺及性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930239-撒波-材料科学与工程系(5539KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[撒波]的文章
百度学术
百度学术中相似的文章
[撒波]的文章
必应学术
必应学术中相似的文章
[撒波]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。