[1] DZIEWONSKI A, BLOCH S, LANDISMAN M J B O T S S O A. A technique for the analysis of transient seismic signals [J]. 1969, 59(1): 427-44.
[2] NAZARIAN S S K H, SHEN J C,WILSON C R. Near-surface profiling of geotechnical sites of surface-wave method [J]. SEG Expanded Abstracts, 1986, 5:126-129.
[3] AKI K R P G. Quantitative Seismology Theory and Methods [M]. San Francisco: Whoremonger, 1980.
[4] CHEN X F, LIU Y Q, ROE O D, et al. Gefitinib or Erlotinib as Maintenance Therapy in Patients with Advanced Stage Non-Small Cell Lung Cancer: A Systematic Review [J]. Plos One, 2013, 8(3).
[5] WEAVER R L, LOBKIS O I J P R L. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies [J]. 2001, 87(13): 134301.
[6] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise [J]. 2005, 307(5715): 1615-8.
[7] 王建楠, 陈晓非, 马青波. 背景噪音提取高阶频散曲线的矢量波数变换方法 [J]. 2017.
[8] WANG J, WU G, CHEN X J J O G R S E. Frequency‐Bessel transform method for effective imaging of higher‐mode Rayleigh dispersion curves from ambient seismic noise data [J]. 2019, 124(4): 3708-23.
[9] 席超强, 夏江海, 宓彬彬, 等. 城市环境高频背景噪声多分量面波频散分析 [J]. 2020.
[10]WU G X, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array [J]. 2020, 125(1): e2019JB018213.
[11]郑定昌, 地震学报. 基于背景噪声的川滇地区勒夫波层析成像 [J]. 2017, 39(5): 633-47.
[12]郑晨, 丁志峰, 地球物理学报 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构 [J]. 2016, 59(9): 3223-36.
[13]CHEN X F. A Systematic and Efficient Method of Computing Normal-Modes for Multilayered Half-Space [J]. Geophys J Int, 1993, 115(2): 391-409.
[14]A H N. The dispersion of surface waves on multi-layered media [J]. B Seismol Soc Am, 1953, 43: 17-34.
[15]DUNKIN J W J B O T S S O A. Computation of modal solutions in layered, elastic media at high frequencies [J]. 1965, 55(2): 335-58.
[16]SCHWAB F, KNOPOFF L J B O T S S O A. Surface-wave dispersion computations [J]. 1970, 60(2): 321-44.
[17]何耀锋. 面波频散反演问题的初步研究 [硕士论文]. 北京: 北京大学 [Z]. 2005
[18]袁亚湘, 孙文瑜 科学出版社. 最优化理论与方法 [J]. 1997.
[19]PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes [J]. 2019, 216(2): 1276-303.
[20]KIRKPATRICK S, GELATT JR C D, VECCHI M P J S. Optimization by simulated annealing [J]. 1983, 220(4598): 671-80.
[21]石耀霖, 地球物理学报. 面波频散反演地球内部构造的遗传算法 [J]. 1995, 38(2): 189-98.
[22]DORIGO M, MANIEZZO V, COLORNI A J I T O S, MAN,, et al. Ant system: optimization by a colony of cooperating agents [J]. 1996, 26(1): 29-41.
[23]翟佳羽, 赵园园, 物探与化探. 面波频散反演地下层状结构的蚁群算法 [J]. 2010, 34(4): 476-81.
[24]尹彬, 地球物理学进展 非线性反演的贝叶斯方法研究综述 [J]. 2016, 31(3): 1027-32.
[25]陈鑫华, 夏江海, 宓彬彬 中国地球科学联合学术年会论文集 —专题四十九: 浅地表地球物理进展 专 地, 专题五十一: 城市地下介质成像和探测. 基于机器学习的瑞雷波频散曲线反演 [J]. 2020.
[26]蔡伟, 宋先海, 袁士川,等. 新的瑞雷波多模式频散曲线反演目标函数 [J]. 2017, 42(9): 1608-22.
[27]宋先海, 肖柏勋, 黄荣荣, 等. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线 [J]. 2003, 27(3): 212-6.
[28]罗银河, 夏江海, 刘江平, 等. 基阶与高阶瑞利波联合反演研究 [J]. 2008, 51(1): 242-9.
[29]NAZARIAN S, STOKOE II K H, HUDSON W R. Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems [M]. 1983.
[30]ANDERSON J G, LEE Y J, ZENG Y H, et al. Control of strong motion by the upper 30 meters [J]. B Seismol Soc Am, 1996, 86(6): 1749-59.
[31]BROCHER T M J B O T S S O A. Empirical relations between elastic wavespeeds and density in the Earth's crust [J]. 2005, 95(6): 2081-92.
[32]YAO H J E S. A method for inversion of layered shear wavespeed azimuthal anisotropy from Rayleigh wave dispersion using the Neighborhood Algorithm [J]. 2015, 28(1): 59-69.
[33]袁艺, 姚华建, 地球物理学报. 基于邻域算法的瑞利面波垂直-水平振幅比及频散曲线联合反演及应用 [J]. 2016, 59(3): 959-71.
[34]张碧星, 鲁来玉, 地球物理学报. 瑞利波勘探中" 之" 字形频散曲线研究 [J]. 2002, 45(02): 263-74.
[35]LIU D C, NOCEDAL J J M P. On the limited memory BFGS method for large scale optimization [J]. 1989, 45(1): 503-28.
[36] GAGNIUC P A. Markov chains: from theory to implementation and experimentation [M]. John Wiley & Sons, 2017.
[37] CHING J, CHEN Y-C J J O E M. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging [J]. 2007, 133(7): 816-32.
[38]工程地球物理学报 王家映. 地球物理资料非线性反演方法讲座 (二) 蒙特卡洛法 [J]. 2007, 4(2): 81-5.
[39]邵广周, 地球科学与环境学报. 基于细化分层法探讨面波频散曲线反演参数的简化 [J]. 2011, 33(3): 317-20.
修改评论