[1] DATTA A, SHAJI A. QUANTUM METROLOGY WITHOUT QUANTUM ENTANGLEMENT[J/OL]. Modern Physics Letters B, 2012, 26(18): 1230010. DOI: 10.1142/S0217984912300104.
[2] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum Metrology[J/OL]. Physical ReviewLetters, 2006, 96(1): 010401. DOI: 10.1103/PhysRevLett.96.010401.
[3] RUBIO J, DUNNINGHAM J. Quantum metrology in the presence of limited data[J/OL]. New Journal of Physics, 2019, 21(4): 043037. DOI: 10.1088/13672630/ab098b.
[4] SCHNABEL R, MAVALVALA N, MCCLELLAND D E, et al. Quantum metrology for gravitational wave astronomy[J/OL]. Nature Communications, 2010, 1(1): 121. DOI: 10.1038/ncomms1122.
[5] TóTH G, APELLANIZ I. Quantum metrology from a quantum information science perspective[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(42): 424006. DOI:10.1088/17518113/47/42/424006.
[6] KITAEV A, SHEN A, VYALYI M. Graduate Studies in Mathematics: volume 47 Classicaland Quantum Computation[M/OL]. Providence, Rhode Island: American MathematicalSociety, 2002. DOI: 10.1090/gsm/047.
[7] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. 2020: 5.
[8] HUMPHREYS P C, METCALF B J, SPRING J B, et al. Linear Optical Quantum Computing in a Single Spatial Mode[J/OL]. Physical Review Letters, 2013, 111(15): 150501. DOI: 10.1103/PhysRevLett.111.150501.
[9] KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J/OL]. Nature, 2001, 409(6816): 4652. DOI: 10.1038/35051009.
[10] URSIN R, TIEFENBACHER F, SCHMITTMANDERBACH T, et al. Entanglementbased quantum communication over 144 km[J/OL]. Nature Physics, 2007, 3(7): 481486. DOI:10.1038/nphys629.
[11] GOTTESMAN D, JENNEWEIN T, CROKE S. LongerBaseline Telescopes Using Quantum Repeaters[J/OL]. Physical Review Letters, 2012, 109(7): 070503. DOI: 10.1103/PhysRevLett.109.070503.
[12] PEDROZOPEñAFIELE, COLOMBO S, SHU C, et al. Entanglement on an optical atomicclock transition[J/OL]. Nature, 2020, 588(7838): 414418.DOI: 10.1038/s4158602030061.
[13] BAUMGRATZ T, DATTA A. Quantum Enhanced Estimation of a Multidimensional Field[J/OL]. Physical Review Letters, 2016, 116(3): 030801. DOI: 10.1103/PhysRevLett.116.030801.
[14] PéREZDELGADO C A, PEARCE M E, KOK P. Fundamental Limits of Classical and Quantum Imaging[J/OL]. Physical Review Letters, 2012, 109(12): 123601. DOI: 10.1103/PhysRevLett.109.123601.
[15] KóMáR P, KESSLER E M, BISHOF M, et al. A quantum network of clocks[J/OL]. Nature Physics, 2014, 10(8): 582587.DOI: 10.1038/nphys3000.
[16] GUO X, BREUM C R, BORREGAARD J, et al. Distributed quantum sensing in a continuousvariable entangled network[J/OL]. Nature Physics, 2020, 16(3): 281284.DOI: 10.1038/s415670190743x.
[17] XIA Y, LI W, CLARK W, et al. Demonstration of a Reconfigurable Entangled RadioFrequency Photonic Sensor Network[J/OL]. Physical Review Letters, 2020, 124(15): 150502. DOI: 10.1103/PhysRevLett.124.150502.
[18] LIU L Z, ZHANG Y Z, LI Z D, et al. Distributed quantum phase estimation with entangledphotons[J/OL]. Nature Photonics, 2021, 15(2): 137142.DOI: 10.1038/s41566020007182.
[19] ZHAO S R, ZHANG Y Z, LIU W Z, et al. Field Demonstration of Distributed Quantum Sensing without PostSelection[J/OL]. Physical Review X, 2021, 11(3): 031009. DOI: 10.1103/PhysRevX.11.031009.
[20] HONG S, UR REHMAN J, KIM Y S, et al. Quantum enhanced multiplephase estimation with multimode N00N states[J/OL]. Nature Communications, 2021, 12(1): 5211. DOI: 10.1038/s41467021254514.
[21] KITAEV A Y. Quantum measurements and the Abelian Stabilizer Problem[J]. arXiv:quantph/9511026, 1995.
[22] DOBšíčEK M, JOHANSSON G, SHUMEIKO V, et al. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A twoqubitbenchmark[J/OL]. Physical Review A, 2007, 76(3): 030306. DOI: 10.1103/PhysRevA.76.030306.
[23] O’LOAN C J. Iterative phase estimation[J/OL]. Journal of Physics A: Mathematical and Theoretical,2010, 43(1): 015301. DOI: 10.1088/17518113/43/1/015301.
[24] SVORE K M, HASTINGS M B, FREEDMAN M. Faster Phase Estimation[J]. arXiv:1304.0741[quantph],2013.
[25] BERRY D W, WISEMAN H M, BRESLIN J K. Optimal input states and feedback for interferometric phase estimation[J/OL]. Physical Review A, 2001, 63(5): 053804. DOI:10.1103/PhysRevA.63.053804.
[26] HENTSCHEL A, SANDERS B C. Machine Learning for Precise Quantum Measurement[J/OL]. Physical Review Letters, 2010, 104(6): 063603. DOI: 10.1103/PhysRevLett.104.063603.
[27] HENTSCHEL A, SANDERS B C. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes[J/OL]. Physical Review Letters, 2011, 107(23): 233601. DOI: 10.1103/PhysRevLett.107.233601.
[28] WIEBE N, GRANADE C. Efficient Bayesian Phase Estimation[J/OL]. Physical Review Letters,2016, 117(1): 010503. DOI: 10.1103/PhysRevLett.117.010503.
[29] PAESANI S, GENTILE A, SANTAGATI R, et al. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip[J/OL]. Physical Review Letters, 2017, 118(10): 100503.DOI: 10.1103/PhysRevLett.118.100503.
[30] D’ARIANO G M, PARIS M G A, SACCHI M F. Quantum Tomography[J]. arXiv:quantph/0302028, 2003.
[31] JAMES D F V, KWIAT P G, MUNRO W J, et al. On the Measurement of Qubits[J/OL]. Physical Review A, 2001, 64(5): 052312. DOI: 10.1103/PhysRevA.64.052312.
[32] ALTEPETER J, JEFFREY E, KWIAT P. Photonic State Tomography[M/OL]//Advances In Atomic, Molecular, and Optical Physics: volume 52. Elsevier, 2005: 105159.DOI: 10.1016/S1049250X(05)520032.
[33] GILCHRIST A, LANGFORD N K, NIELSEN M A. Distance measures to compare real and ideal quantum processes[J/OL]. Physical Review A, 2005, 71(6): 062310. DOI: 10.1103/PhysRevA.71.062310.
[34] Nielsen MA, Chuang IL. Quantum Computationand Quantum Information, 10th Anniversary edition[M]. Cambridge University Press, 2011.
[35] GüHNE O, TóTH G. Entanglement detection[J/OL]. Physics Reports, 2009, 474(16):175.DOI: 10.1016/j.physrep.2009.02.004.
[36] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J/OL].Reviews of Modern Physics, 2009, 81(2): 865942.DOI: 10.1103/RevModPhys.81.865.
[37] ASPECT A, GRANGIER P, ROGER G. Experimental Tests of Realistic Local Theories via Bell’s Theorem[J/OL]. Physical Review Letters, 1981, 47(7): 460463.DOI: 10.1103/PhysRevLett.47.460.
[38] EKERT A K. Quantum cryptography based on Bell’s theorem[J/OL]. Physical Review Letters,1991, 67(6): 661663.DOI: 10.1103/PhysRevLett.67.661.
[39] BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum statevia dual classical and EinsteinPodolskyRosen channels[J/OL]. Physical Review Letters, 1993,70(13): 18951899.DOI: 10.1103/PhysRevLett.70.1895.
[40] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J/OL].Nature, 1997, 390(6660): 575579.DOI: 10.1038/37539.
[41] JOZSA R, ABRAMS D S, DOWLING J P, et al. Quantum Clock Synchronization Based on Shared Prior Entanglement[J/OL]. Physical Review Letters, 2000, 85(9): 20102013.DOI:10.1103/PhysRevLett.85.2010.
[42] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. 10th anniversary ed ed. Cambridge ; New York: Cambridge University Press, 2010.
[43] PERES A. Separability Criterion for Density Matrices[J/OL]. Physical Review Letters, 1996,77(8): 14131415.DOI: 10.1103/PhysRevLett.77.1413.
[44] GIOVANNETTI V. QuantumEnhanced Measurements: Beating the Standard Quantum Limit[J/OL]. Science, 2004, 306(5700): 13301336.DOI: 10.1126/science.1104149.
[45] HILLERY M, BUžEK V, BERTHIAUME A. Quantum secret sharing[J/OL]. Physical ReviewA, 1999, 59(3): 18291834.DOI: 10.1103/PhysRevA.59.1829.
[46] ZHAO Z, CHEN Y A, ZHANG A N, et al. Experimental demonstration of fivephoton entanglement and opendestination teleportation[J/OL]. Nature, 2004, 430(6995): 5458.DOI:10.1038/nature02643.
[47] GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell’s theorem without inequalities[J/OL]. American Journal of Physics, 1990, 58(12): 11311143.DOI: 10.1119/1.16243.
[48] SCARANI V, GISIN N. Spectral decomposition of Bell’s operators for qubits[J/OL]. Journal of Physics A: Mathematical and General, 2001, 34(30): 60436053.DOI: 10.1088/03054470/34/30/314.
[49] ZHONG H S, LI Y, LI W, et al. 12Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal EntangledPhoton Pairs from Parametric DownConversion[J/OL]. Physical Review Letters, 2018, 121(25): 250505. DOI: 10.1103/PhysRevLett.121.250505.
[50] LU C Y, ZHOU X Q, GüHNE O, et al. Experimental entanglement of six photons in graph states[J/OL]. Nature Physics, 2007, 3(2): 9195.DOI: 10.1038/nphys507.
[51] GAO W B, LU C Y, YAO X C, et al. Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state[J/OL]. Nature Physics, 2010, 6(5): 331335.DOI: 10.1038/nphys1603.
[52] BOUWMEESTER D, PAN J W, DANIELL M, et al. Observation of ThreePhoton GreenbergerHorneZeilinger Entanglement[J/OL]. Physical Review Letters, 1999, 82(7): 13451349.DOI:10.1103/PhysRevLett.82.1345.
[53] ZHAO Z, YANG T, CHEN Y A, et al. Experimental Violation of Local Realism by FourPhoton GreenbergerHorneZeilinger Entanglement[J/OL]. Physical Review Letters, 2003, 91(18): 180401. DOI: 10.1103/PhysRevLett.91.180401.
[54] YAO X C, WANG T X, XU P, et al. Observation of eightphoton entanglement[J/OL]. Nature Photonics, 2012, 6(4): 225228.DOI: 10.1038/nphoton.2011.354.
[55] ZHANG C, HUANG Y F, WANG Z, et al. Experimental GreenbergerHorneZeilingerTypeSixPhotonQuantum Nonlocality[J/OL]. Physical Review Letters, 2015, 115(26): 260402.DOI: 10.1103/PhysRevLett.115.260402.
[56] WANG X L, CHEN L K, LI W, et al. Experimental TenPhoton Entanglement[J/OL]. Physical Review Letters, 2016, 117(21): 210502. DOI: 10.1103/PhysRevLett.117.210502.
[57] LEE H, KOK P, DOWLING J P. A quantum Rosetta stone for interferometry[J/OL]. Journal of Modern Optics, 2002, 49(1415):23252338.DOI: 10.1080/0950034021000011536.
[58] GüHNE O, LU C Y, GAO W B, et al. Toolbox for entanglement detection and fidelity estimation[J/OL]. Physical Review A, 2007, 76(3): 030305. DOI: 10.1103/PhysRevA.76.030305.
[59] BOURENNANE M, EIBL M, KURTSIEFER C, et al. Experimental Detection of Multipartite Entanglement using Witness Operators[J/OL]. Physical Review Letters, 2004, 92(8): 087902.DOI: 10.1103/PhysRevLett.92.087902.
[60] BRUSS D, CIRAC J I, HORODECKI P, et al. Reflections upon separability and distillability[J/OL]. Journal of Modern Optics, 2002, 49(8): 13991418.DOI: 10.1080/09500340110105975.
[61] CHEN L, CHEN Y X. Multiqubit entanglement witness[J/OL]. Physical Review A, 2007, 76(2): 022330. DOI: 10.1103/PhysRevA.76.022330.
[62] EISERT J, BRANDãO F G S L, AUDENAERT K M R. Quantitative entanglement witnesses[J/OL]. New Journal of Physics, 2007, 9(3): 4646.DOI: 10.1088/13672630/9/3/046.
[63] GüHNE O, HYLLUS P, BRUß D, et al. Detection of entanglement with few local measurements[J/OL]. Physical Review A, 2002, 66(6): 062305. DOI: 10.1103/PhysRevA.66.062305.
[64] GüHNE O, HYLLUS P. Investigating three qubit entanglement with local measurements[J/OL].International Journal of Theoretical Physics, 2003, 42(5): 10011013.DOI: 10.1023/A:1025422606845.
[65] GüHNE O, LüTKENHAUS N. Nonlinear Entanglement Witnesses[J/OL]. Physical ReviewLetters, 2006, 96(17): 170502. DOI: 10.1103/PhysRevLett.96.170502.
[66] HORODECKI M, HORODECKI P, HORODECKI R. Separability of Mixed States: Necessary and Sufficient Conditions[J/OL]. Physics Letters A, 1996, 223(12):18.DOI: 10.1016/S03759601(96)007062.
[67] LEWENSTEIN M, KRAUS B, CIRAC J I, et al. Optimization of entanglement witnesses[J/OL].Physical Review A, 2000, 62(5): 052310. DOI: 10.1103/PhysRevA.62.052310.
[68] SIUDZIńSKA K, CHRUśCIńSKI D. Entanglement witnesses from mutually unbiased measurements[J/OL]. Scientific Reports, 2021, 11(1): 22988. DOI: 10.1038/s41598021023562.
[69] TERHAL B M. Bell Inequalities and the Separability Criterion[J/OL]. Physics Letters A, 2000,271(56):319326.DOI: 10.1016/S03759601(00)004011.
[70] TERHAL B M. Detecting quantum entanglement[J/OL]. Theoretical Computer Science, 2002,287(1): 313335.DOI: 10.1016/S03043975(02)001391.
[71] TOKUNAGA Y, YAMAMOTO T, KOASHI M, et al. Fidelity estimation and entanglement verification for experimentally produced fourqubitcluster states[J/OL]. Physical Review A,2006, 74(2): 020301. DOI: 10.1103/PhysRevA.74.020301.
[72] TóTH G. Detection of multipartite entanglement in the vicinity of symmetric Dicke states[J/OL]. Journal of the Optical Society of America B, 2007, 24(2): 275. DOI: 10.1364/JOSAB.24.000275.
[73] TóTH G, GüHNE O. Detecting Genuine Multipartite Entanglement with Two Local Measurements[J/OL]. Physical Review Letters, 2005, 94(6): 060501. DOI: 10.1103/PhysRevLett.94.060501.
[74] TóTH G, GüHNE O. Entanglement detection in the stabilizer formalism[J/OL]. Physical ReviewA, 2005, 72(2): 022340. DOI: 10.1103/PhysRevA.72.022340.
[75] ACíN A, BRUß D, LEWENSTEIN M, et al. Classification of Mixed ThreeQubit States[J/OL].Physical Review Letters, 2001, 87(4): 040401. DOI: 10.1103/PhysRevLett.87.040401.
[76] KOK P, BRAUNSTEIN S L, DOWLING J P. Quantum lithography, entanglement and Heisenberglimitedparameter estimation[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics,2004, 6(8): S811S815.DOI: 10.1088/14644266/6/8/029.
[77] BRAUNSTEIN S L, CAVES C M. Statistical distance and the geometry of quantum states[J/OL]. Physical Review Letters, 1994, 72(22): 34393443.DOI: 10.1103/PhysRevLett.72.3439.
[78] HELSTROM C W. Quantum detection and estimation theory[J]. 22.
[79] PEZZé L, SMERZI A. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit[J/OL].Physical Review Letters, 2009, 102(10): 100401. DOI: 10.1103/PhysRevLett.102.100401.
[80] BOIXO S, FLAMMIA S T, CAVES C M, et al. Generalized Limits for SingleParameter Quantum Estimation[J/OL]. Physical Review Letters, 2007, 98(9): 090401. DOI: 10.1103/PhysRevLett.98.090401.
[81] MA J, HUANG Y X, WANG X, et al. Quantum Fisher information of the GreenbergerHorneZeilingerstate in decoherence channels[J/OL]. Physical Review A, 2011, 84(2): 022302. DOI:10.1103/PhysRevA.84.022302.
[82] WATANABE Y, SAGAWA T, UEDA M. Optimal Measurement on Noisy Quantum Systems[J/OL]. Physical Review Letters, 2010, 104(2): 020401. DOI: 10.1103/PhysRevLett.104.020401.
[83] LY A, MARSMAN M, VERHAGEN J, et al. A Tutorial on Fisher information[J/OL]. Journalof Mathematical Psychology, 2017, 80: 4055.DOI: 10.1016/j.jmp.2017.05.006.
[84] REN Z H, LI Y, LI Y N, et al. Development on quantum metrology with quantum Fisher information[J/OL]. Acta Physica Sinica, 2019, 68(4): 040601. DOI: 10.7498/aps.68.20181965.
[85] PARIS M G A. Quantum estimation for quantum technology[J]. arXiv:0804.2981 [quantph],2009.
[86] LIU J, YUAN H, LU X M, et al. Quantum Fisher information matrix and multiparameter estimation[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2020, 53(2): 023001.DOI: 10.1088/17518121/ab5d4d.
[87] REN J G, XU P, YONG H L, et al. Groundtosatellite quantum teleportation[J/OL]. Nature,2017, 549(7670): 7073.DOI: 10.1038/nature23675.
[88] SHIH Y H, ALLEY C O. New Type of EinsteinPodolskyRosenBohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion[J/OL]. Physical ReviewLetters, 1988, 61(26): 29212924.DOI: 10.1103/PhysRevLett.61.2921.
[89] KWIAT P G, MATTLE K, WEINFURTER H, et al. New HighIntensity Source of PolarizationEntangledPhoton Pairs[J/OL]. Physical Review Letters, 1995, 75(24): 43374341.DOI: 10.1103/PhysRevLett.75.4337.
[90] BARZ S, CRONENBERG G, ZEILINGER A, et al. Heralded generation of entangled photon pairs[J/OL]. Nature Photonics, 2010, 4(8): 553556.DOI: 10.1038/nphoton.2010.156.
[91] KAISER F, ISSAUTIER A, NGAH L A, et al. Highquality polarization entanglement state preparation and manipulation in standard telecommunication channels[J/OL]. New Journal of Physics, 2012, 14(8): 085015. DOI: 10.1088/13672630/14/8/085015.
[92] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarizationentangled photons[J/OL]. Physical Review A, 1999, 60(2): R773R776. DOI: 10.1103/PhysRevA.60.R773.
[93] RANGARAJAN R, GOGGIN M, KWIAT P. Optimizing typeI polarizationentangled photons [J/OL]. Optics Express, 2009, 17(21): 18920. DOI: 10.1364/OE.17.018920.
[94] PELTON M, MARSDEN P, LJUNGGREN D, et al. Bright, singlespatialmode source of frequency nondegenerate, polarizationentangled photon pairs using periodically poled KTP[J/OL]. Optics Express, 2004, 12(15): 3573. DOI: 10.1364/OPEX.12.003573.
[95] TROJEK P, WEINFURTER H. Collinear source of polarizationentangled photon pairs at nondegenerate wavelengths[J/OL]. Applied Physics Letters, 2008, 92(21): 211103. DOI:10.1063/1.2924280.
[96] STEINLECHNER F, TROJEK P, JOFRE M, et al. A highbrightnesssource of polarizationentangledphotons optimized for applications in free space[J/OL]. Optics Express, 2012, 20(9):9640. DOI: 10.1364/OE.20.009640.
[97] TAKEUCHI S. Beamlike twinphoton generation by use of type II parametric downconversion[J/OL]. Optics Letters, 2001, 26(11): 843. DOI: 10.1364/OL.26.000843.
[98] KIM Y H. Quantum interference with beamlike typeII spontaneous parametric downconversion[J/OL]. Physical Review A, 2003, 68(1): 013804. DOI: 10.1103/PhysRevA.68.013804.
[99] NIU X L, HUANG Y F, XIANG G Y, et al. Beamlike highbrightness source of polarizationentangled photon pairs[J/OL]. Optics Letters, 2008, 33(9): 968. DOI: 10.1364/OL.33.000968.
[100] LO H P, YABUSHITA A, LUO C W, et al. Beamlike photonpair generation for twophoton interference and polarization entanglement[J/OL]. Physical Review A, 2011, 83(2): 022313. DOI: 10.1103/PhysRevA.83.022313.
[101] FIORENTINO M, KUKLEWICZ C E, WONG F N C. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones[J/OL]. Optics Express, 2005, 13(1): 127. DOI: 10.1364/OPEX.13.000127.
[102] STEINLECHNER F, RAMELOW S, JOFRE M, et al. Phasestable source of polarizationentangled photons in a linear doublepass configuration[J/OL]. Optics Express, 2013, 21(10):11943. DOI: 10.1364/OE.21.011943.
[103] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarizationentangled photons[J/OL]. Physical Review A, 1999, 60(2): R773R776. DOI: 10.1103/PhysRevA.60.R773.
[104] SHOR P W. PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J/OL]. SIAM Journal on Computing, 1997, 26(5): 14841509. DOI:10.1137/S0097539795293172.
[105] REDDY D V, NEREM R R, LITA A E, et al. Exceeding 95% system efficiency within the telecom Cband in superconducting nanowire single photon detectors[C/OL]//Conference on Lasers and ElectroOptics. San Jose, California: OSA, 2019: FF1A.3. DOI: 10.1364/CLEO_QELS.2019.FF1A.3.
[106] PEZZé L, SMERZI A. Sub shotnoise interferometric phase sensitivity with beryllium ions Schrödinger cat states[J/OL]. Europhysics Letters (EPL), 2007, 78(3): 30004. DOI: 10.1209/02955075/78/30004.
[107] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Entanglementfree Heisenberglimited phase estimation[J/OL]. Nature, 2007, 450(7168): 393396. DOI: 10.1038/nature06257.
[108] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Demonstrating Heisenberglimited unambiguous phase estimation without adaptive measurements[J/OL]. New Journal of Physics, 2009, 11(7): 073023. DOI: 10.1088/13672630/11/7/073023.
[109] BERRY D W, HIGGINS B L, BARTLETT S D, et al. How to perform the most accurate possible phase measurements[J/OL]. Physical Review A, 2009, 80(5): 052114. DOI: 10.1103/PhysRevA.80.052114.
[110] POLINO E, RIVA M, VALERI M, et al. Experimental multiphase estimation on a chip[J/OL]. Optica, 2019, 6(3): 288. DOI: 10.1364/OPTICA.6.000288.
[111] LUMINO A, POLINO E, RAB A S, et al. Experimental Phase Estimation Enhanced by Machine Learning[J/OL]. Physical Review Applied, 2018, 10(4): 044033. DOI: 10.1103/PhysRevApplied.10.044033.
[112] WISEMAN H M, BERRY D W, BARTLETT S D, et al. Adaptive Measurements in the Optical Quantum Information Laboratory[J/OL]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(6): 16611672. DOI: 10.1109/JSTQE.2009.2020810.
[113] BARNDORFFNIELSENO E, GILL R D. Fisher information in quantum statistics[J/OL].Journal of Physics A: Mathematical and General, 2000, 33(24): 44814490.DOI: 10.1088/03054470/33/24/306.
[114] NOLAN S P, SMERZI A, PEZZè L. A machine learning approach to Bayesian parameter estimation[J]. arXiv:2006.02369 [quantph],2021.
[115] RAMBHATLA K, D’AURELIO S E, VALERI M, et al. Adaptive phase estimation through a genetic algorithm[J/OL]. Physical Review Research, 2020, 2(3): 033078. DOI: 10.1103/PhysRevResearch.2.033078.
[116] FIDERER L J, SCHUFF J, BRAUN D. NeuralNetwork Heuristics for Adaptive Bayesian Quantum Estimation[J/OL]. PRX Quantum, 2021, 2(2): 020303. DOI: 10.1103/PRXQuantum.2.020303.
[117] GEBHART V, SMERZI A, PEZZè L. Bayesian Quantum Multiphase Estimation Algorithm[J/OL]. Physical Review Applied, 2021, 16(1): 014035. DOI: 10.1103/PhysRevApplied.16.014035.
[118] VALERI M, POLINO E, PODERINI D, et al. Experimental adaptive Bayesian estimation of multiple phases with limited data[J/OL]. npj Quantum Information, 2020, 6(1): 92. DOI:10.1038/s41534020003266.
修改评论