中文版 | English
题名

基于多光子纠缠的量子相位估计实验研究

其他题名
Experimental study of quantum phase estimation based on multi-photon entanglement
姓名
姓名拼音
LIU Biyao
学号
11930027
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
李正达
导师单位
量子科学与工程研究院;物理系
论文答辩日期
2022-05-11
论文提交日期
2022-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

测量是科学研究的基础,提高测量精度至关重要。在经典测量中,测量精度的极限是散粒噪声极限(Shot Noise Limit,SNL),也被称为标准量子极限(Standard Quantum Limit,SQL);而在量子精密测量中,我们可以利用量子相干性和量子纠缠的特性提高测量灵敏度,获得超越散粒噪声极限的测量精度。利用量子资源,测量可以达到的精度极限被称为海森堡极限(Heisenberg Limit,HL)。量子精密测量技术已经应用在引力波探测、磁场探测、时间同步等多个领域。

高精度的相位估计是量子精密测量最重要的任务之一,一方面是因为很多物理量都可以投影到相位上进行测量,对于相位的高精度估计,可以用于对其他物理量的高精度测量;另一方面,量子网络已经成为量子信息领域重要的研究热点,分布式量子精密测量是量子网络的主要功能之一,实现空间位置不同的多个相位参数的高精度估计具有十分重要的应用价值。 

本人在硕士期间的主要工作是在四光子纠缠网络实验平台上完成的量子相位估计实验。我们首先将处于GHZ纠缠态的四个光子分发到四个测量节点,并在每个光子上施加一个完全未知的相位,然后根据四光子符合测量的结果,采用自适应贝叶斯推断方法实时估计四个未知相位的均值。在我们的实验中,相位估计的精度接近海森堡极限,即使在干涉可见度低至0.6时,估计精度仍然可以超越散粒噪声极限。 

本人工作的主要创新在于:首次采用贝叶斯推断算法对空间分布的相位估计进行实时估计,且相位估计的精度接近海森堡理论极限;采用基于费舍尔信息(Fisher Information)理论的自适应反馈策略,使得相位估计在整个有效参数取值空间都能达到超越散粒噪声极限的估计精度。

其他摘要

Measurement is an important foundation of scientific research. In classical cases, the measurement precision is limited by the shot­noise limit (SNL) ; while in quantum cases, we can exploit quantum resources, such as coherence and entanglement, to improve the measurement precision beyond the SNL and achieve the Heisenberg limit (HL). Quantum metrology has been applied in many fields such as gravitational wave detection, magnetic field detection, and time synchronization. 

Phase estimation is a key task in quantum metrology, and many physical quantities can be estimated by the phase estimation. Distributed quantum metrology (DQM), as one of the most important task in developing quantum networks has attracted a lot of attentions and has wide applications in quantum science.

In this thesis, we complete a distributed quantum phase estimation in a four­-photon entanglement quantum network. In experiments, we first distribute four photons of a GHZ state to four measurement nodes, and rotate each photon with an independent and unknown phase in its polarization space. Then we use real-time adaptive Bayesian inference to estimate the mean value of the four unknown phases based on the measurement results of the four­-photon coincidence. In our experiments, the optimal precision of the phase estimation is close to the Heisenberg limit. And in noisy case, we also experimentally verify that the estimation precision can still exceed the shot noise limit even when the visibility of four-photon GHZ is as low as 0.6.

There are two main innovations in this thesis. First, it is the first time that the real-time Bayesian inference algorithm is applied in the distributed quantum metrology to achieve an optimal precision close to the Heisenberg limit. Second, we design an adaptive strategy based on Fisher information theory, which enables the precision of the phase estimation to go beyond the SNL for the entire parameter space.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] DATTA A, SHAJI A. QUANTUM METROLOGY WITHOUT QUANTUM ENTANGLEMENT[J/OL]. Modern Physics Letters B, 2012, 26(18): 1230010. DOI: 10.1142/S0217984912300104.
[2] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum Metrology[J/OL]. Physical ReviewLetters, 2006, 96(1): 010401. DOI: 10.1103/PhysRevLett.96.010401.
[3] RUBIO J, DUNNINGHAM J. Quantum metrology in the presence of limited data[J/OL]. New Journal of Physics, 2019, 21(4): 043037. DOI: 10.1088/13672630/ab098b.
[4] SCHNABEL R, MAVALVALA N, MCCLELLAND D E, et al. Quantum metrology for gravitational wave astronomy[J/OL]. Nature Communications, 2010, 1(1): 121. DOI: 10.1038/ncomms1122.
[5] TóTH G, APELLANIZ I. Quantum metrology from a quantum information science perspective[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(42): 424006. DOI:10.1088/17518113/47/42/424006.
[6] KITAEV A, SHEN A, VYALYI M. Graduate Studies in Mathematics: volume 47 Classicaland Quantum Computation[M/OL]. Providence, Rhode Island: American MathematicalSociety, 2002. DOI: 10.1090/gsm/047.
[7] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. 2020: 5.
[8] HUMPHREYS P C, METCALF B J, SPRING J B, et al. Linear Optical Quantum Computing in a Single Spatial Mode[J/OL]. Physical Review Letters, 2013, 111(15): 150501. DOI: 10.1103/PhysRevLett.111.150501.
[9] KNILL E, LAFLAMME R, MILBURN G J. A scheme for efficient quantum computation with linear optics[J/OL]. Nature, 2001, 409(6816): 4652. DOI: 10.1038/35051009.
[10] URSIN R, TIEFENBACHER F, SCHMITTMANDERBACH T, et al. Entanglementbased quantum communication over 144 km[J/OL]. Nature Physics, 2007, 3(7): 481486. DOI:10.1038/nphys629.
[11] GOTTESMAN D, JENNEWEIN T, CROKE S. LongerBaseline Telescopes Using Quantum Repeaters[J/OL]. Physical Review Letters, 2012, 109(7): 070503. DOI: 10.1103/PhysRevLett.109.070503.
[12] PEDROZOPEñAFIELE, COLOMBO S, SHU C, et al. Entanglement on an optical atomicclock transition[J/OL]. Nature, 2020, 588(7838): 414418.DOI: 10.1038/s4158602030061.
[13] BAUMGRATZ T, DATTA A. Quantum Enhanced Estimation of a Multidimensional Field[J/OL]. Physical Review Letters, 2016, 116(3): 030801. DOI: 10.1103/PhysRevLett.116.030801.
[14] PéREZDELGADO C A, PEARCE M E, KOK P. Fundamental Limits of Classical and Quantum Imaging[J/OL]. Physical Review Letters, 2012, 109(12): 123601. DOI: 10.1103/PhysRevLett.109.123601.
[15] KóMáR P, KESSLER E M, BISHOF M, et al. A quantum network of clocks[J/OL]. Nature Physics, 2014, 10(8): 582587.DOI: 10.1038/nphys3000.
[16] GUO X, BREUM C R, BORREGAARD J, et al. Distributed quantum sensing in a continuousvariable entangled network[J/OL]. Nature Physics, 2020, 16(3): 281284.DOI: 10.1038/s415670190743x.
[17] XIA Y, LI W, CLARK W, et al. Demonstration of a Reconfigurable Entangled RadioFrequency Photonic Sensor Network[J/OL]. Physical Review Letters, 2020, 124(15): 150502. DOI: 10.1103/PhysRevLett.124.150502.
[18] LIU L Z, ZHANG Y Z, LI Z D, et al. Distributed quantum phase estimation with entangledphotons[J/OL]. Nature Photonics, 2021, 15(2): 137142.DOI: 10.1038/s41566020007182.
[19] ZHAO S R, ZHANG Y Z, LIU W Z, et al. Field Demonstration of Distributed Quantum Sensing without PostSelection[J/OL]. Physical Review X, 2021, 11(3): 031009. DOI: 10.1103/PhysRevX.11.031009.
[20] HONG S, UR REHMAN J, KIM Y S, et al. Quantum enhanced multiplephase estimation with multimode N00N states[J/OL]. Nature Communications, 2021, 12(1): 5211. DOI: 10.1038/s41467021254514.
[21] KITAEV A Y. Quantum measurements and the Abelian Stabilizer Problem[J]. arXiv:quantph/9511026, 1995.
[22] DOBšíčEK M, JOHANSSON G, SHUMEIKO V, et al. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A twoqubitbenchmark[J/OL]. Physical Review A, 2007, 76(3): 030306. DOI: 10.1103/PhysRevA.76.030306.
[23] O’LOAN C J. Iterative phase estimation[J/OL]. Journal of Physics A: Mathematical and Theoretical,2010, 43(1): 015301. DOI: 10.1088/17518113/43/1/015301.
[24] SVORE K M, HASTINGS M B, FREEDMAN M. Faster Phase Estimation[J]. arXiv:1304.0741[quantph],2013.
[25] BERRY D W, WISEMAN H M, BRESLIN J K. Optimal input states and feedback for interferometric phase estimation[J/OL]. Physical Review A, 2001, 63(5): 053804. DOI:10.1103/PhysRevA.63.053804.
[26] HENTSCHEL A, SANDERS B C. Machine Learning for Precise Quantum Measurement[J/OL]. Physical Review Letters, 2010, 104(6): 063603. DOI: 10.1103/PhysRevLett.104.063603.
[27] HENTSCHEL A, SANDERS B C. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes[J/OL]. Physical Review Letters, 2011, 107(23): 233601. DOI: 10.1103/PhysRevLett.107.233601.
[28] WIEBE N, GRANADE C. Efficient Bayesian Phase Estimation[J/OL]. Physical Review Letters,2016, 117(1): 010503. DOI: 10.1103/PhysRevLett.117.010503.
[29] PAESANI S, GENTILE A, SANTAGATI R, et al. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip[J/OL]. Physical Review Letters, 2017, 118(10): 100503.DOI: 10.1103/PhysRevLett.118.100503.
[30] D’ARIANO G M, PARIS M G A, SACCHI M F. Quantum Tomography[J]. arXiv:quantph/0302028, 2003.
[31] JAMES D F V, KWIAT P G, MUNRO W J, et al. On the Measurement of Qubits[J/OL]. Physical Review A, 2001, 64(5): 052312. DOI: 10.1103/PhysRevA.64.052312.
[32] ALTEPETER J, JEFFREY E, KWIAT P. Photonic State Tomography[M/OL]//Advances In Atomic, Molecular, and Optical Physics: volume 52. Elsevier, 2005: 105159.DOI: 10.1016/S1049250X(05)520032.
[33] GILCHRIST A, LANGFORD N K, NIELSEN M A. Distance measures to compare real and ideal quantum processes[J/OL]. Physical Review A, 2005, 71(6): 062310. DOI: 10.1103/PhysRevA.71.062310.
[34] Nielsen MA, Chuang IL. Quantum Computationand Quantum Information, 10th Anniversary edition[M]. Cambridge University Press, 2011.
[35] GüHNE O, TóTH G. Entanglement detection[J/OL]. Physics Reports, 2009, 474(16):175.DOI: 10.1016/j.physrep.2009.02.004.
[36] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J/OL].Reviews of Modern Physics, 2009, 81(2): 865942.DOI: 10.1103/RevModPhys.81.865.
[37] ASPECT A, GRANGIER P, ROGER G. Experimental Tests of Realistic Local Theories via Bell’s Theorem[J/OL]. Physical Review Letters, 1981, 47(7): 460463.DOI: 10.1103/PhysRevLett.47.460.
[38] EKERT A K. Quantum cryptography based on Bell’s theorem[J/OL]. Physical Review Letters,1991, 67(6): 661663.DOI: 10.1103/PhysRevLett.67.661.
[39] BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum statevia dual classical and EinsteinPodolskyRosen channels[J/OL]. Physical Review Letters, 1993,70(13): 18951899.DOI: 10.1103/PhysRevLett.70.1895.
[40] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J/OL].Nature, 1997, 390(6660): 575579.DOI: 10.1038/37539.
[41] JOZSA R, ABRAMS D S, DOWLING J P, et al. Quantum Clock Synchronization Based on Shared Prior Entanglement[J/OL]. Physical Review Letters, 2000, 85(9): 20102013.DOI:10.1103/PhysRevLett.85.2010.
[42] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. 10th anniversary ed ed. Cambridge ; New York: Cambridge University Press, 2010.
[43] PERES A. Separability Criterion for Density Matrices[J/OL]. Physical Review Letters, 1996,77(8): 14131415.DOI: 10.1103/PhysRevLett.77.1413.
[44] GIOVANNETTI V. QuantumEnhanced Measurements: Beating the Standard Quantum Limit[J/OL]. Science, 2004, 306(5700): 13301336.DOI: 10.1126/science.1104149.
[45] HILLERY M, BUžEK V, BERTHIAUME A. Quantum secret sharing[J/OL]. Physical ReviewA, 1999, 59(3): 18291834.DOI: 10.1103/PhysRevA.59.1829.
[46] ZHAO Z, CHEN Y A, ZHANG A N, et al. Experimental demonstration of fivephoton entanglement and opendestination teleportation[J/OL]. Nature, 2004, 430(6995): 5458.DOI:10.1038/nature02643.
[47] GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell’s theorem without inequalities[J/OL]. American Journal of Physics, 1990, 58(12): 11311143.DOI: 10.1119/1.16243.
[48] SCARANI V, GISIN N. Spectral decomposition of Bell’s operators for qubits[J/OL]. Journal of Physics A: Mathematical and General, 2001, 34(30): 60436053.DOI: 10.1088/03054470/34/30/314.
[49] ZHONG H S, LI Y, LI W, et al. 12Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal EntangledPhoton Pairs from Parametric DownConversion[J/OL]. Physical Review Letters, 2018, 121(25): 250505. DOI: 10.1103/PhysRevLett.121.250505.
[50] LU C Y, ZHOU X Q, GüHNE O, et al. Experimental entanglement of six photons in graph states[J/OL]. Nature Physics, 2007, 3(2): 9195.DOI: 10.1038/nphys507.
[51] GAO W B, LU C Y, YAO X C, et al. Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state[J/OL]. Nature Physics, 2010, 6(5): 331335.DOI: 10.1038/nphys1603.
[52] BOUWMEESTER D, PAN J W, DANIELL M, et al. Observation of ThreePhoton GreenbergerHorneZeilinger Entanglement[J/OL]. Physical Review Letters, 1999, 82(7): 13451349.DOI:10.1103/PhysRevLett.82.1345.
[53] ZHAO Z, YANG T, CHEN Y A, et al. Experimental Violation of Local Realism by FourPhoton GreenbergerHorneZeilinger Entanglement[J/OL]. Physical Review Letters, 2003, 91(18): 180401. DOI: 10.1103/PhysRevLett.91.180401.
[54] YAO X C, WANG T X, XU P, et al. Observation of eightphoton entanglement[J/OL]. Nature Photonics, 2012, 6(4): 225228.DOI: 10.1038/nphoton.2011.354.
[55] ZHANG C, HUANG Y F, WANG Z, et al. Experimental GreenbergerHorneZeilingerTypeSixPhotonQuantum Nonlocality[J/OL]. Physical Review Letters, 2015, 115(26): 260402.DOI: 10.1103/PhysRevLett.115.260402.
[56] WANG X L, CHEN L K, LI W, et al. Experimental TenPhoton Entanglement[J/OL]. Physical Review Letters, 2016, 117(21): 210502. DOI: 10.1103/PhysRevLett.117.210502.
[57] LEE H, KOK P, DOWLING J P. A quantum Rosetta stone for interferometry[J/OL]. Journal of Modern Optics, 2002, 49(1415):23252338.DOI: 10.1080/0950034021000011536.
[58] GüHNE O, LU C Y, GAO W B, et al. Toolbox for entanglement detection and fidelity estimation[J/OL]. Physical Review A, 2007, 76(3): 030305. DOI: 10.1103/PhysRevA.76.030305.
[59] BOURENNANE M, EIBL M, KURTSIEFER C, et al. Experimental Detection of Multipartite Entanglement using Witness Operators[J/OL]. Physical Review Letters, 2004, 92(8): 087902.DOI: 10.1103/PhysRevLett.92.087902.
[60] BRUSS D, CIRAC J I, HORODECKI P, et al. Reflections upon separability and distillability[J/OL]. Journal of Modern Optics, 2002, 49(8): 13991418.DOI: 10.1080/09500340110105975.
[61] CHEN L, CHEN Y X. Multiqubit entanglement witness[J/OL]. Physical Review A, 2007, 76(2): 022330. DOI: 10.1103/PhysRevA.76.022330.
[62] EISERT J, BRANDãO F G S L, AUDENAERT K M R. Quantitative entanglement witnesses[J/OL]. New Journal of Physics, 2007, 9(3): 4646.DOI: 10.1088/13672630/9/3/046.
[63] GüHNE O, HYLLUS P, BRUß D, et al. Detection of entanglement with few local measurements[J/OL]. Physical Review A, 2002, 66(6): 062305. DOI: 10.1103/PhysRevA.66.062305.
[64] GüHNE O, HYLLUS P. Investigating three qubit entanglement with local measurements[J/OL].International Journal of Theoretical Physics, 2003, 42(5): 10011013.DOI: 10.1023/A:1025422606845.
[65] GüHNE O, LüTKENHAUS N. Nonlinear Entanglement Witnesses[J/OL]. Physical ReviewLetters, 2006, 96(17): 170502. DOI: 10.1103/PhysRevLett.96.170502.
[66] HORODECKI M, HORODECKI P, HORODECKI R. Separability of Mixed States: Necessary and Sufficient Conditions[J/OL]. Physics Letters A, 1996, 223(12):18.DOI: 10.1016/S03759601(96)007062.
[67] LEWENSTEIN M, KRAUS B, CIRAC J I, et al. Optimization of entanglement witnesses[J/OL].Physical Review A, 2000, 62(5): 052310. DOI: 10.1103/PhysRevA.62.052310.
[68] SIUDZIńSKA K, CHRUśCIńSKI D. Entanglement witnesses from mutually unbiased measurements[J/OL]. Scientific Reports, 2021, 11(1): 22988. DOI: 10.1038/s41598021023562.
[69] TERHAL B M. Bell Inequalities and the Separability Criterion[J/OL]. Physics Letters A, 2000,271(56):319326.DOI: 10.1016/S03759601(00)004011.
[70] TERHAL B M. Detecting quantum entanglement[J/OL]. Theoretical Computer Science, 2002,287(1): 313335.DOI: 10.1016/S03043975(02)001391.
[71] TOKUNAGA Y, YAMAMOTO T, KOASHI M, et al. Fidelity estimation and entanglement verification for experimentally produced fourqubitcluster states[J/OL]. Physical Review A,2006, 74(2): 020301. DOI: 10.1103/PhysRevA.74.020301.
[72] TóTH G. Detection of multipartite entanglement in the vicinity of symmetric Dicke states[J/OL]. Journal of the Optical Society of America B, 2007, 24(2): 275. DOI: 10.1364/JOSAB.24.000275.
[73] TóTH G, GüHNE O. Detecting Genuine Multipartite Entanglement with Two Local Measurements[J/OL]. Physical Review Letters, 2005, 94(6): 060501. DOI: 10.1103/PhysRevLett.94.060501.
[74] TóTH G, GüHNE O. Entanglement detection in the stabilizer formalism[J/OL]. Physical ReviewA, 2005, 72(2): 022340. DOI: 10.1103/PhysRevA.72.022340.
[75] ACíN A, BRUß D, LEWENSTEIN M, et al. Classification of Mixed ThreeQubit States[J/OL].Physical Review Letters, 2001, 87(4): 040401. DOI: 10.1103/PhysRevLett.87.040401.
[76] KOK P, BRAUNSTEIN S L, DOWLING J P. Quantum lithography, entanglement and Heisenberglimitedparameter estimation[J/OL]. Journal of Optics B: Quantum and Semiclassical Optics,2004, 6(8): S811S815.DOI: 10.1088/14644266/6/8/029.
[77] BRAUNSTEIN S L, CAVES C M. Statistical distance and the geometry of quantum states[J/OL]. Physical Review Letters, 1994, 72(22): 34393443.DOI: 10.1103/PhysRevLett.72.3439.
[78] HELSTROM C W. Quantum detection and estimation theory[J]. 22.
[79] PEZZé L, SMERZI A. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit[J/OL].Physical Review Letters, 2009, 102(10): 100401. DOI: 10.1103/PhysRevLett.102.100401.
[80] BOIXO S, FLAMMIA S T, CAVES C M, et al. Generalized Limits for SingleParameter Quantum Estimation[J/OL]. Physical Review Letters, 2007, 98(9): 090401. DOI: 10.1103/PhysRevLett.98.090401.
[81] MA J, HUANG Y X, WANG X, et al. Quantum Fisher information of the GreenbergerHorneZeilingerstate in decoherence channels[J/OL]. Physical Review A, 2011, 84(2): 022302. DOI:10.1103/PhysRevA.84.022302.
[82] WATANABE Y, SAGAWA T, UEDA M. Optimal Measurement on Noisy Quantum Systems[J/OL]. Physical Review Letters, 2010, 104(2): 020401. DOI: 10.1103/PhysRevLett.104.020401.
[83] LY A, MARSMAN M, VERHAGEN J, et al. A Tutorial on Fisher information[J/OL]. Journalof Mathematical Psychology, 2017, 80: 4055.DOI: 10.1016/j.jmp.2017.05.006.
[84] REN Z H, LI Y, LI Y N, et al. Development on quantum metrology with quantum Fisher information[J/OL]. Acta Physica Sinica, 2019, 68(4): 040601. DOI: 10.7498/aps.68.20181965.
[85] PARIS M G A. Quantum estimation for quantum technology[J]. arXiv:0804.2981 [quantph],2009.
[86] LIU J, YUAN H, LU X M, et al. Quantum Fisher information matrix and multiparameter estimation[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2020, 53(2): 023001.DOI: 10.1088/17518121/ab5d4d.
[87] REN J G, XU P, YONG H L, et al. Groundtosatellite quantum teleportation[J/OL]. Nature,2017, 549(7670): 7073.DOI: 10.1038/nature23675.
[88] SHIH Y H, ALLEY C O. New Type of EinsteinPodolskyRosenBohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion[J/OL]. Physical ReviewLetters, 1988, 61(26): 29212924.DOI: 10.1103/PhysRevLett.61.2921.
[89] KWIAT P G, MATTLE K, WEINFURTER H, et al. New HighIntensity Source of PolarizationEntangledPhoton Pairs[J/OL]. Physical Review Letters, 1995, 75(24): 43374341.DOI: 10.1103/PhysRevLett.75.4337.
[90] BARZ S, CRONENBERG G, ZEILINGER A, et al. Heralded generation of entangled photon pairs[J/OL]. Nature Photonics, 2010, 4(8): 553556.DOI: 10.1038/nphoton.2010.156.
[91] KAISER F, ISSAUTIER A, NGAH L A, et al. Highquality polarization entanglement state preparation and manipulation in standard telecommunication channels[J/OL]. New Journal of Physics, 2012, 14(8): 085015. DOI: 10.1088/13672630/14/8/085015.
[92] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarizationentangled photons[J/OL]. Physical Review A, 1999, 60(2): R773R776. DOI: 10.1103/PhysRevA.60.R773.
[93] RANGARAJAN R, GOGGIN M, KWIAT P. Optimizing typeI polarizationentangled photons [J/OL]. Optics Express, 2009, 17(21): 18920. DOI: 10.1364/OE.17.018920.
[94] PELTON M, MARSDEN P, LJUNGGREN D, et al. Bright, singlespatialmode source of frequency nondegenerate, polarizationentangled photon pairs using periodically poled KTP[J/OL]. Optics Express, 2004, 12(15): 3573. DOI: 10.1364/OPEX.12.003573.
[95] TROJEK P, WEINFURTER H. Collinear source of polarizationentangled photon pairs at nondegenerate wavelengths[J/OL]. Applied Physics Letters, 2008, 92(21): 211103. DOI:10.1063/1.2924280.
[96] STEINLECHNER F, TROJEK P, JOFRE M, et al. A highbrightnesssource of polarizationentangledphotons optimized for applications in free space[J/OL]. Optics Express, 2012, 20(9):9640. DOI: 10.1364/OE.20.009640.
[97] TAKEUCHI S. Beamlike twinphoton generation by use of type II parametric downconversion[J/OL]. Optics Letters, 2001, 26(11): 843. DOI: 10.1364/OL.26.000843.
[98] KIM Y H. Quantum interference with beamlike typeII spontaneous parametric downconversion[J/OL]. Physical Review A, 2003, 68(1): 013804. DOI: 10.1103/PhysRevA.68.013804.
[99] NIU X L, HUANG Y F, XIANG G Y, et al. Beamlike highbrightness source of polarizationentangled photon pairs[J/OL]. Optics Letters, 2008, 33(9): 968. DOI: 10.1364/OL.33.000968.
[100] LO H P, YABUSHITA A, LUO C W, et al. Beamlike photonpair generation for twophoton interference and polarization entanglement[J/OL]. Physical Review A, 2011, 83(2): 022313. DOI: 10.1103/PhysRevA.83.022313.
[101] FIORENTINO M, KUKLEWICZ C E, WONG F N C. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones[J/OL]. Optics Express, 2005, 13(1): 127. DOI: 10.1364/OPEX.13.000127.
[102] STEINLECHNER F, RAMELOW S, JOFRE M, et al. Phasestable source of polarizationentangled photons in a linear doublepass configuration[J/OL]. Optics Express, 2013, 21(10):11943. DOI: 10.1364/OE.21.011943.
[103] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarizationentangled photons[J/OL]. Physical Review A, 1999, 60(2): R773R776. DOI: 10.1103/PhysRevA.60.R773.
[104] SHOR P W. PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J/OL]. SIAM Journal on Computing, 1997, 26(5): 14841509. DOI:10.1137/S0097539795293172.
[105] REDDY D V, NEREM R R, LITA A E, et al. Exceeding 95% system efficiency within the telecom Cband in superconducting nanowire single photon detectors[C/OL]//Conference on Lasers and ElectroOptics. San Jose, California: OSA, 2019: FF1A.3. DOI: 10.1364/CLEO_QELS.2019.FF1A.3.
[106] PEZZé L, SMERZI A. Sub shotnoise interferometric phase sensitivity with beryllium ions Schrödinger cat states[J/OL]. Europhysics Letters (EPL), 2007, 78(3): 30004. DOI: 10.1209/02955075/78/30004.
[107] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Entanglementfree Heisenberglimited phase estimation[J/OL]. Nature, 2007, 450(7168): 393396. DOI: 10.1038/nature06257.
[108] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Demonstrating Heisenberglimited unambiguous phase estimation without adaptive measurements[J/OL]. New Journal of Physics, 2009, 11(7): 073023. DOI: 10.1088/13672630/11/7/073023.
[109] BERRY D W, HIGGINS B L, BARTLETT S D, et al. How to perform the most accurate possible phase measurements[J/OL]. Physical Review A, 2009, 80(5): 052114. DOI: 10.1103/PhysRevA.80.052114.
[110] POLINO E, RIVA M, VALERI M, et al. Experimental multiphase estimation on a chip[J/OL]. Optica, 2019, 6(3): 288. DOI: 10.1364/OPTICA.6.000288.
[111] LUMINO A, POLINO E, RAB A S, et al. Experimental Phase Estimation Enhanced by Machine Learning[J/OL]. Physical Review Applied, 2018, 10(4): 044033. DOI: 10.1103/PhysRevApplied.10.044033.
[112] WISEMAN H M, BERRY D W, BARTLETT S D, et al. Adaptive Measurements in the Optical Quantum Information Laboratory[J/OL]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(6): 16611672. DOI: 10.1109/JSTQE.2009.2020810.
[113] BARNDORFFNIELSENO E, GILL R D. Fisher information in quantum statistics[J/OL].Journal of Physics A: Mathematical and General, 2000, 33(24): 44814490.DOI: 10.1088/03054470/33/24/306.
[114] NOLAN S P, SMERZI A, PEZZè L. A machine learning approach to Bayesian parameter estimation[J]. arXiv:2006.02369 [quantph],2021.
[115] RAMBHATLA K, D’AURELIO S E, VALERI M, et al. Adaptive phase estimation through a genetic algorithm[J/OL]. Physical Review Research, 2020, 2(3): 033078. DOI: 10.1103/PhysRevResearch.2.033078.
[116] FIDERER L J, SCHUFF J, BRAUN D. NeuralNetwork Heuristics for Adaptive Bayesian Quantum Estimation[J/OL]. PRX Quantum, 2021, 2(2): 020303. DOI: 10.1103/PRXQuantum.2.020303.
[117] GEBHART V, SMERZI A, PEZZè L. Bayesian Quantum Multiphase Estimation Algorithm[J/OL]. Physical Review Applied, 2021, 16(1): 014035. DOI: 10.1103/PhysRevApplied.16.014035.
[118] VALERI M, POLINO E, PODERINI D, et al. Experimental adaptive Bayesian estimation of multiple phases with limited data[J/OL]. npj Quantum Information, 2020, 6(1): 92. DOI:10.1038/s41534020003266.

所在学位评定分委会
量子科学与工程研究院
国内图书分类号
O431.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336374
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
刘碧瑶. 基于多光子纠缠的量子相位估计实验研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930027-刘碧瑶-量子科学与工程(23814KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘碧瑶]的文章
百度学术
百度学术中相似的文章
[刘碧瑶]的文章
必应学术
必应学术中相似的文章
[刘碧瑶]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。