[1]李俊峰,李广.中国能源、环境与气候变化问题回顾与展望[J].环境与可持续发展,2020,45(05):8-17.
[2]徐良才,郭英海,公衍伟,等.浅谈中国主要能源利用现状及未来能源发展趋势[J].能源技术与管理,2010(03):155-157.
[3]李海燕,刘静.低品位余热利用技术的研究现状、困境和新策略[J].科技导报,2010,28(17):112-117.
[4]连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(02):123-128.
[5]周耘,王康,陈思明.工业余热利用现状及技术展望[J].科技情报开发与经济,2010,20(23):162-164.
[6]孟嘉.工业烟气余热回收利用方案优化研究[D].武汉:华中科技大学,2008:1-5.
[7]梁玲,孙静,岳脉健,等.全球能源消费结构近十年数据对比分析[J].世界石油工业,2020,27(03):41-47.
[8]DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428):703-706.
[9]CHAMPIER D. Thermoelectric generators: A review of applications[J]. Energy Conversion and Management, 2017, 140:167-181.
[10]BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895):1457-1461.
[11]WU ZH, ZHANG S, LIU ZK, et al. Thermoelectric converter: Strategies from materials to device application[J]. Nano Energy, 2022, 91:106692.
[12]YANG JH, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin, 2006, 31(3):224-229.
[13]栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004(11):1011-1019.
[14]全睿,谭保华,唐新峰,等.汽车尾气温差发电装置中热电器件的试验研究[J].中国机械工程,2014,25(05):705-709.
[15]HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and moving forward[J]. Science, 2017, 357(6358):eaak9997.
[16]TRITT T M, SUBRAMANIAN M A. Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View[J]. MRS Bulletin, 2011, 31(3):188-198.
[17]王超,张蕊,杜欣,等.新型热电材料综述[J].电子科技大学学报,2017,46(01):133-150.
[18]徐庆,赵琨鹏,魏天然,等.热电材料的研究现状与未来展望[J].硅酸盐学报,2021,49(07):1296-1305.
[19]LIU WS, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices[J]. Acta Materialia, 2015, 87:357-376.
[20]张骐昊,柏胜强,陈立东.热电发电器件与应用技术:现状、挑战与展望[J].无机材料学报,2019,34(03):279-293.
[21]陈立东.热电材料与器件[M].北京:科学出版社,2018:163-181.
[22]HAN ZJ, LI JW, JIANG F, et al. Room-temperature thermoelectric materials: Challenges and a new paradigm[J]. Journal of Materiomics, 2022, 8(2):427-436.
[23]LI J, ZHANG S, JIA F, et al. Point defect engineering and machinability in n-type Mg3Sb2-based materials[J]. Materials Today Physics, 2020, 15:100269.
[24]SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114.
[25]MAO J, SHUAI J, SONG SW, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10548-10553.
[26]GOLDSMID H J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation[J]. Materials (Basel), 2014, 7(4):2577-2592.
[27]YAMINI S A, MITCHELL D R G, GIBBS Z M, et al. Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p-type Multiphase Lead- Chalcogenides[J]. Advanced Energy Materials, 2015, 5(21):1501047.
[28]PEI YL, TAN GJ, FENG D, et al. Integrating Band Structure Engineering with All-Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System[J]. Advanced Energy Materials, 2017, 7(3):1601450.
[29]BATHULA S, JAYASIMHADRI M, SINGH N, et al. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys[J]. Applied Physics Letters, 2012, 101(21):634.
[30]BATHULA S, JAYASIMHADRI M, GAHTORI B, et al. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys[J]. Nanoscale, 2015, 7(29):12474-12483.
[31]SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20):7837-7846.
[32]ROGL G, GRYTSIV A, ROGL P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Materialia, 2014, 76:434-448.
[33]SONG SW, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8:25-33.
[34]余伟阳,唐壁玉,彭立明.α-Mg3Sb2的电子结构和力学性能[J].物理学报,2009,58(S1):216-223.
[35]SHI XM, WANG X, LI W, et al. Advances in Thermoelectric Mg3Sb2 and Its Derivatives[J]. Small Methods, 2018, 2(10):1800022.
[36]TAMAKI H, SATO H K, KANNO T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance[J]. Advanced Materials, 2016, 28(46):10182-10187.
[37]ZHANG JW, SONG LR, IVERSEN B B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment[J]. npj Computational Materials, 2019, 5(1):76.
[38]TOBERER E S, MAY A F, SNYDER G J. Zintl Chemistry for Designing High Efficiency Thermoelectric Materials[J]. Chemistry of Materials, 2009, 22(3):624-634.
[39]ZHANG JW, SONG LR, SIST M, et al. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials[J]. Nature Communications, 2018, 9(1):4716.
[40]MACCIONI M B, FARRIS R, FIORENTINI V. Ab initio thermal conductivity of thermoelectric Mg3Sb2: Evidence for dominant extrinsic effects[J]. Physical Review B, 2018, 98(22):220301.
[41]XIN JZ, LI GW, AUFFERMANN G, et al. Growth and transport properties of Mg3X2 (X = Sb, Bi) single crystals[J]. Materials Today Physics, 2018, 7:61-68.
[42]JIN M, LIN SQ, LI W, et al. Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2[J]. Materials Today Physics, 2021, 21:100508.
[43]DING JX, LANIGAN-ATKINS T, CALDERóN-CUEVA M, et al. Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics[J]. Science Advances, 2021, 7(21):eabg1449.
[44]SHI XM, ZHAO TT, ZHANG XY, et al. Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping[J]. Advanced Materials, 2019, 31(36):e1903387.
[45]ZHANG F, CHEN C, YAO HH, et al. High‐Performance N‐type Mg3Sb2 towards Thermoelectric Application near Room Temperature[J]. Advanced Functional Materials, 2019, 30(5):1906143.
[46]SHANG HJ, LIANG ZX, XU CC, et al. N-Type Mg3Sb2-xBix Alloys as Promising Thermoelectric Materials[J]. Research (Wash D C), 2020(4):84-91.
[47]SUN X, LI X, YANG J, et al. Achieving band convergence by tuning the bonding ionicity in n-type Mg3Sb2[J]. Journal of Computational Chemistry, 2019, 40(18):1693-1700.
[48]SHUAI J, MAO J, SONG SW, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10(3):799-807.
[49]CHEN YQ, WANG C, MA Z, et al. Improved thermoelectric performance of n-type Mg3Sb2-Mg3Bi2 alloy with Co element doping[J]. Current Applied Physics, 2021, 21:25-30.
[50]OZEN M, YAHYAOGLU M, CANDOLFI C, et al. Enhanced thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 via engineering microstructure through melt-centrifugation[J]. Journal of Materials Chemistry A, 2021, 9(3):1733-1742.
[51]CHEN XX, WU HJ, CUI J, et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure[J]. Nano Energy, 2018, 52:246-255.
[52]REN ZS, SHUAI J, MAO J, et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn[J]. Acta Materialia, 2018, 143:265-271.
[53]SHUAI J, WANG YM, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2[J]. Acta Materialia, 2015, 93:187-193.
[54]BHARDWAJ A, CHAUHAN N S, GOEL S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit[J]. Phys Chem Chem Phys, 2016, 18(8):6191-6200.
[55]ZHANG JW, SONG LR, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8(1):13901.
[56]MAO J, WU YX, SONG SW, et al. Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5[J]. Materials Today Physics, 2017, 3:1-6.
[57]MAO J, WU YX, SONG SW, et al. Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials[J]. ACS Energy Letters, 2017, 2(10):2245-2250.
[58]IMASATO K, KANG S D, OHNO S, et al. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance[J]. Materials Horizons, 2018, 5(1):59-64.
[59]LI AR, FU CG, ZHAO XB, et al. High-Performance Mg3Sb2-xBix Thermoelectrics: Progress and Perspective[J]. Research (Wash D C), 2020(4):92-113.
[60]SHI XM, ZHANG XY, GANOSE A, et al. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics[J]. Materials Today Physics, 2021, 18:100362.
[61]KANNO T, TAMAKI H, SATO H K, et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01[J]. Applied Physics Letters, 2018, 112(3):033903.
[62]WOOD M, KUO J J, IMASATO K, et al. Improvement of Low-Temperature zT in a Mg3Sb2-Mg3Bi2 Solid Solution via Mg-Vapor Annealing[J]. Advanced Materials, 2019, 31(35):e1902337.
[63]LUO T, KUO J J, GRIFFITH K J, et al. Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg3Sb2-Based Thermoelectric Materials[J]. Advanced Functional Materials, 2021, 31(28):2100258.
[64]ZHANG JW, SONG LR, MAMAKHEL A, et al. High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application[J]. Chemistry of Materials, 2017, 29(12):5371-5383.
[65]ZHANG JW, SONG LR, BORUP K A, et al. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials[J]. Advanced Energy Materials, 2018, 8(16):1702776.
[66]GORAI P, ORTIZ B R, TOBERER E S, et al. Investigation of n-type doping strategies for Mg3Sb2[J]. Journal of Materials Chemistry A, 2018, 6(28):13806-13815.
[67]ZHANG F, CHEN C, LI S, et al. Enhanced Thermoelectric Performance in N-Type Mg3.2Sb1.5Bi0.5 by La or Ce Doping into Mg[J]. Advanced Electronic Materials, 2020, 6(3):1901391.
[68]ZHANG JW, SONG LR, IVERSEN B B. Improved Thermoelectric Properties of N-Type Mg3Sb2 through Cation-Site Doping with Gd or Ho[J]. ACS Applied Materials Interfaces, 2021, 13(9):10964-10971.
[69]CUI YL, ZHANG XL, DUAN B, et al. Band structure and thermoelectric properties of Al-doped Mg3−xAlxSb2 compounds[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16):15206-15213.
[70]TANI J I, ISHIKAWA H. One-step rapid synthesis of n-type Y-doped Mg3Sb2 by pulsed electric current sintering and investigation of its thermoelectric properties[J]. Materials Letters, 2020, 262:127056.
[71]SHI XM, SUN C, BU ZL, et al. Revelation of Inherently High Mobility Enables Mg3Sb2 as a Sustainable Alternative to n-Bi2Te3 Thermoelectrics[J]. Advanced Science (Weinh), 2019, 6(16):1802286.
[72]ZHANG JW, SONG LR, IVERSEN B B. Rapid One-Step Synthesis and Compaction of High-Performance n-Type Mg3Sb2 Thermoelectrics[J]. Angewandte Chemie, 2020, 132(11):4308-4312.
[73]KIHOU K, KUNIOKA H, NISHIATE H, et al. Thermoelectric properties of yttrium-doped Mg3(Sb,Bi)2 synthesized by melting method[J]. Journal of Materials Research and Technology, 2021, 10:438-444.
[74]XU C, LIANG Z, SHANG H, et al. Scalable synthesis of n-type Mg3Sb2-xBix for thermoelectric applications[J]. Materials Today Physics, 2021, 17:100336.
[75]KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds[J]. Energy & Environmental Science, 2018, 11(2):429-434.
[76]KUO J J, YU Y, KANG S D, et al. Mg Deficiency in Grain Boundaries of n-Type Mg3Sb2 Identified by Atom Probe Tomography[J]. Advanced Materials Interfaces, 2019, 6(13):1900429.
[77]XIA CL, CUI J, CHEN Y. Modulation of Band Alignment and Electron-Phonon Scattering in Mg3Sb2 via Pressure[J]. ACS Applied Electronic Materials, 2020, 2(9):2745-2749.
[78]AGNE M T, IMASATO K, ANAND S, et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature[J]. Materials Today Physics, 2018, 6:83-88.
[79]PARK J, XIA Y, OZOLIŅŠ V, et al. Optimal band structure for thermoelectrics with realistic scattering and bands[J]. npj Computational Materials, 2021, 7(1):43.
[80]LI J, ZHENG SQ, FANG T, et al. Computational prediction of a high ZT of n-type Mg3Sb2-based compounds with isotropic thermoelectric conduction performance[J]. Phys Chem Chem Phys, 2018, 20(11):7686-7693.
[81]OHNO S, IMASATO K, ANAND S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1):141-154.
[82]CHONG XY, GUAN PW, WANG Y, et al. Understanding the Intrinsic P-Type Behavior and Phase Stability of Thermoelectric α-Mg3Sb2[J]. ACS Applied Energy Materials, 2018, 1(11):6600-6608.
[83]ZHU Q, SONG SW, ZHU HT, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials[J]. Journal of Power Sources, 2019, 414:393-400.
[84]YIN L, CHEN C, ZHANG F, et al. Reliable N-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications[J]. Acta Materialia, 2020, 198:25-34.
[85]SHANG HJ, LIANG ZX, XU CC, et al. N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation[J]. Acta Materialia, 2020, 201:572-579.
[86]LIU ZH, SATO N, GAO WH, et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting[J]. Joule, 2021, 5(5):1196-1208.
[87]BU ZL, ZHANG XY, HU YX, et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K[J]. Energy & Environmental Science, 2021, 14(12):6506-6513.
[88]HU JS, GUO FK, GUO MC, et al. Promoted application potential of p-type Mg3Sb1.5Bi0.5 for the matched thermal expansion with its n-type counterpart[J]. Journal of Materiomics, 2020, 6(4):729-735.
[89]SUN W, SUI R, YUAN G, et al. Thermoelectric module design to improve lifetime and output power density[J]. Materials Today Physics, 2021, 18:100391.
[90]陈卫祥,陈文录,徐铸德,等.碳纳米管的特性及其高性能的复合材料[J].复合材料学报,2001(04):1-5.
[91]WANG XD, WANG H, LIU B. Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting[J]. Polymers (Basel), 2018, 10(11):1196.
[92]KHASIMSAHEB B, SINGH N K, BATHULA S, et al. The effect of carbon nanotubes (CNT) on thermoelectric properties of lead telluride (PbTe) nanocubes[J]. Current Applied Physics, 2017, 17(2):306-313.
[93]GAO WX, CHAI HD, WU F, et al. Enhanced thermoelectric properties of CNT dispersed and Na-doped Bi2Ba2Co2Oy composites[J]. Ceramics International, 2017, 43(7):5723-5727.
[94]SUN HR, JIA XP, LV P, et al. Improved thermoelectric performance of Te-doped and CNT dispersed CoSb3 skutterudite bulk materials via HTHP[J]. RSC Advances, 2015, 5(75):61324-61329.
[95]KIM K T, CHOI S Y, SHIN E H, et al. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite[J]. Carbon, 2013, 52:541-549.
[96]KIM K T, MIN T S, SON I. The Influence of Surface Functionalization on the Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(10):10777-10781.
[97]IMASATO K, OHNO S, KANG S D, et al. Improving the thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 by reducing excess Mg[J]. APL Materials, 2018, 6:016106.
[98]胡晓凯,张双猛,赵府,等.热电器件的界面和界面材料[J].无机材料学报,2019,34(03):269-278.
修改评论