中文版 | English
题名

N型Mg3Sb2基热电材料和发电器件的制备及研究

其他题名
PREPARATION AND RESEARCH OF N-TYP EMg3Sb2-BASED THERMOELECTRIC MATERIALS AND POWER GENERATION DEVICES
姓名
姓名拼音
CEN Xiaoyi
学号
12032056
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
何佳清
导师单位
物理系
论文答辩日期
2022-05-12
论文提交日期
2022-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

热电技术能够回收利用低品位余热将其转换成清洁无污染的电能,从而提高能源利用效率、实现节能减排。在诸多热电材料体系中,Mg3Sb2基热电材料凭借其无毒无污染、价廉、含量丰富的优势,在中低温热电发电领域有着巨大的应用前景。尽管Mg3Sb2基材料的热电性能提升策略被广泛研究,但其相关的阻挡层界面和发电器件制备的研究报道很少。因此制备高热电性能的nMg3Sb2基材料以及优化其热电发电器件的界面设计和制备方法有着重要意义。本课题利用行星球磨和放电等离子烧结方法制备nMg3Sb2基材料,对材料性能提升、阻挡层制备以及发电器件制备进行了研究获得了高热电性能的nMg3Sb2基材料,并制备了具有高能量转换效率的热电发电器件。主要的研究成果如下:

本课题通过多壁碳纳米管MWCNTsCu的掺杂策略提升了nMg3Sb2基材料的热电性能。少量的MWCNTs掺杂使得功率因子显著提高,并且降低了热导率,从而提高样品的ZT值。而微量Cu元素掺杂能够有效提高样品的低温ZT值。微量CuMWCNTs共同掺杂可以结合两者对样品热电性能的有利影响。Mg3.5Sb1.5Bi0.45Te0.05Cu0.01/ 0.1wt% CNT共掺样品在整个工作温度范围内的ZT值得到提高,749K时样品的ZT峰值为1.7,室温ZT值也有约20%的提高,而且样品的热电性能可重复性

本课题对nMg3Sb2基热电材料的两种阻挡层界面进行了研究。在60020min的放电等离子烧结条件下,相比于Fe-Co合金,316L不锈钢作为阻挡层时样品与原热电材料有着更相近的功率因子。Fe-Co合金阻挡层的厚度和致密度不均匀,在烧结制备时阻挡层中就已经存在较为明显的元素扩散。316L不锈钢阻挡层结构致密且均匀,可以在阻挡层制备的过程中有效地阻止元素扩散,经过退火后各种元素的分布情况与退火前相比没有显著变化。故316L不锈钢作为阻挡层时,界面有良好的热稳定性。

本课题制备了具有高能量转换效率的发电器件。利用nMg3Sb2材料和pPbTe材料制备包含两对热电臂的发电器件。当热端温度为766K,电流为2.32A时,器件的最大输出功率约为0.5W,最大能量转换效率为10.3%

其他摘要

Thermoelectric technology can recycle low-grade waste heat and convert it into clean electrical energy, thereby improving energy efficiency and achieving energy conservation and emission reduction. Among many thermoelectric material systems, Mg3Sb2-based thermoelectric materials have great application prospects in the field of medium and low temperature thermoelectric power generation by virtue of their advantages of non-toxicity, non-polluting, low price and abundant content. Although the thermoelectric performance enhancement strategies of Mg3Sb2-based materials have been widely studied, there are few reports on their contact layer preparation and power generation device fabrication. Therefore, it is of great significance to prepare n-type Mg3Sb2-based materials with high thermoelectric performance and to optimize the interfaces design and fabrication method of the devices. The n-type Mg3Sb2-based materials were prepared by planetary ball milling and spark plasma sintering, and the improvement of material performance, the preparation of contact layers and the fabrication of devices were studied. N-type Mg3Sb2-based materials with high ZT value were obtained, and a device with high conversion efficiency was fabricated. The main research results are as follows:

The thermoelectric performance of n-type Mg3Sb2-based materials was enhanced by the doping strategy of MWCNTs and Cu. A small amount of MWCNTs doping significantly improves the power factor and reduces the thermal conductivity, thereby increasing the ZT value of the samples. The doping of trace Cu elements can effectively improve the low temperature ZT value of the material. Co-doping of Cu and MWCNTs can combine the favorable effects of both on the thermoelectric performance of the samples. The ZT value of the Mg3.5Sb1.5Bi0.45Te0.05Cu0.01/ 0.1wt% CNT co-doped sample is improved in the whole operation temperature range, the ZT peak value of the sample is 1.7 at 749K, and the room temperature ZT value also has about 20% improvement. In addition, the thermoelectric performance of the sample is highly repeatable.

The interfaces of two contact layers of n-type Mg3Sb2-based materials were investigated. Under the condition of SPS at 600 and 20min, compared with Fe-Co alloy, when 316L stainless steel is used as the contact layer, the sample has a power factor more similar to that of the TE material. The thickness and density of the Fe-Co alloy contact layer are not uniform, and there is obvious element diffusion in the contact layer during sintering. The structure of the 316L stainless steel contact layer is dense and uniform, which can effectively prevent the diffusion of elements during the preparation of the contact layer, and the distribution of elements after annealing has no significant change compared with before annealing. Therefore, when 316L stainless steel is used as the contact layer, the interfaces have good thermal stability.

A power generation device with high conversion efficiency was fabricated. Using n-type Mg3Sb2 material and p-type PbTe material, the device containing two pairs of thermoelectric arms was fabricated. When the hot side temperature is 766K and the current is 2.32A, the maximum output power of the device is about 0.5W, and the maximum conversion efficiency is 10.3%.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-7
参考文献列表

[1]李俊峰,李广.中国能源、环境与气候变化问题回顾与展望[J].环境与可持续发展,2020,45(05):8-17.
[2]徐良才,郭英海,公衍伟,等.浅谈中国主要能源利用现状及未来能源发展趋势[J].能源技术与管理,2010(03):155-157.
[3]李海燕,刘静.低品位余热利用技术的研究现状、困境和新策略[J].科技导报,2010,28(17):112-117.
[4]连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(02):123-128.
[5]周耘,王康,陈思明.工业余热利用现状及技术展望[J].科技情报开发与经济,2010,20(23):162-164.
[6]孟嘉.工业烟气余热回收利用方案优化研究[D].武汉:华中科技大学,2008:1-5.
[7]梁玲,孙静,岳脉健,等.全球能源消费结构近十年数据对比分析[J].世界石油工业,2020,27(03):41-47.
[8]DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428):703-706.
[9]CHAMPIER D. Thermoelectric generators: A review of applications[J]. Energy Conversion and Management, 2017, 140:167-181.
[10]BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895):1457-1461.
[11]WU ZH, ZHANG S, LIU ZK, et al. Thermoelectric converter: Strategies from materials to device application[J]. Nano Energy, 2022, 91:106692.
[12]YANG JH, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin, 2006, 31(3):224-229.
[13]栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004(11):1011-1019.
[14]全睿,谭保华,唐新峰,等.汽车尾气温差发电装置中热电器件的试验研究[J].中国机械工程,2014,25(05):705-709.
[15]HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and moving forward[J]. Science, 2017, 357(6358):eaak9997.
[16]TRITT T M, SUBRAMANIAN M A. Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View[J]. MRS Bulletin, 2011, 31(3):188-198.
[17]王超,张蕊,杜欣,等.新型热电材料综述[J].电子科技大学学报,2017,46(01):133-150.
[18]徐庆,赵琨鹏,魏天然,等.热电材料的研究现状与未来展望[J].硅酸盐学报,2021,49(07):1296-1305.
[19]LIU WS, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices[J]. Acta Materialia, 2015, 87:357-376.
[20]张骐昊,柏胜强,陈立东.热电发电器件与应用技术:现状、挑战与展望[J].无机材料学报,2019,34(03):279-293.
[21]陈立东.热电材料与器件[M].北京:科学出版社,2018:163-181.
[22]HAN ZJ, LI JW, JIANG F, et al. Room-temperature thermoelectric materials: Challenges and a new paradigm[J]. Journal of Materiomics, 2022, 8(2):427-436.
[23]LI J, ZHANG S, JIA F, et al. Point defect engineering and machinability in n-type Mg3Sb2-based materials[J]. Materials Today Physics, 2020, 15:100269.
[24]SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114.
[25]MAO J, SHUAI J, SONG SW, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10548-10553.
[26]GOLDSMID H J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation[J]. Materials (Basel), 2014, 7(4):2577-2592.
[27]YAMINI S A, MITCHELL D R G, GIBBS Z M, et al. Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p-type Multiphase Lead- Chalcogenides[J]. Advanced Energy Materials, 2015, 5(21):1501047.
[28]PEI YL, TAN GJ, FENG D, et al. Integrating Band Structure Engineering with All-Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System[J]. Advanced Energy Materials, 2017, 7(3):1601450.
[29]BATHULA S, JAYASIMHADRI M, SINGH N, et al. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys[J]. Applied Physics Letters, 2012, 101(21):634.
[30]BATHULA S, JAYASIMHADRI M, GAHTORI B, et al. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys[J]. Nanoscale, 2015, 7(29):12474-12483.
[31]SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20):7837-7846.
[32]ROGL G, GRYTSIV A, ROGL P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Materialia, 2014, 76:434-448.
[33]SONG SW, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8:25-33.
[34]余伟阳,唐壁玉,彭立明.α-Mg3Sb2的电子结构和力学性能[J].物理学报,2009,58(S1):216-223.
[35]SHI XM, WANG X, LI W, et al. Advances in Thermoelectric Mg3Sb2 and Its Derivatives[J]. Small Methods, 2018, 2(10):1800022.
[36]TAMAKI H, SATO H K, KANNO T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance[J]. Advanced Materials, 2016, 28(46):10182-10187.
[37]ZHANG JW, SONG LR, IVERSEN B B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment[J]. npj Computational Materials, 2019, 5(1):76.
[38]TOBERER E S, MAY A F, SNYDER G J. Zintl Chemistry for Designing High Efficiency Thermoelectric Materials[J]. Chemistry of Materials, 2009, 22(3):624-634.
[39]ZHANG JW, SONG LR, SIST M, et al. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials[J]. Nature Communications, 2018, 9(1):4716.
[40]MACCIONI M B, FARRIS R, FIORENTINI V. Ab initio thermal conductivity of thermoelectric Mg3Sb2: Evidence for dominant extrinsic effects[J]. Physical Review B, 2018, 98(22):220301.
[41]XIN JZ, LI GW, AUFFERMANN G, et al. Growth and transport properties of Mg3X2 (X = Sb, Bi) single crystals[J]. Materials Today Physics, 2018, 7:61-68.
[42]JIN M, LIN SQ, LI W, et al. Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2[J]. Materials Today Physics, 2021, 21:100508.
[43]DING JX, LANIGAN-ATKINS T, CALDERóN-CUEVA M, et al. Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics[J]. Science Advances, 2021, 7(21):eabg1449.
[44]SHI XM, ZHAO TT, ZHANG XY, et al. Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping[J]. Advanced Materials, 2019, 31(36):e1903387.
[45]ZHANG F, CHEN C, YAO HH, et al. High‐Performance N‐type Mg3Sb2 towards Thermoelectric Application near Room Temperature[J]. Advanced Functional Materials, 2019, 30(5):1906143.
[46]SHANG HJ, LIANG ZX, XU CC, et al. N-Type Mg3Sb2-xBix Alloys as Promising Thermoelectric Materials[J]. Research (Wash D C), 2020(4):84-91.
[47]SUN X, LI X, YANG J, et al. Achieving band convergence by tuning the bonding ionicity in n-type Mg3Sb2[J]. Journal of Computational Chemistry, 2019, 40(18):1693-1700.
[48]SHUAI J, MAO J, SONG SW, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10(3):799-807.
[49]CHEN YQ, WANG C, MA Z, et al. Improved thermoelectric performance of n-type Mg3Sb2-Mg3Bi2 alloy with Co element doping[J]. Current Applied Physics, 2021, 21:25-30.
[50]OZEN M, YAHYAOGLU M, CANDOLFI C, et al. Enhanced thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 via engineering microstructure through melt-centrifugation[J]. Journal of Materials Chemistry A, 2021, 9(3):1733-1742.
[51]CHEN XX, WU HJ, CUI J, et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure[J]. Nano Energy, 2018, 52:246-255.
[52]REN ZS, SHUAI J, MAO J, et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn[J]. Acta Materialia, 2018, 143:265-271.
[53]SHUAI J, WANG YM, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2[J]. Acta Materialia, 2015, 93:187-193.
[54]BHARDWAJ A, CHAUHAN N S, GOEL S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit[J]. Phys Chem Chem Phys, 2016, 18(8):6191-6200.
[55]ZHANG JW, SONG LR, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8(1):13901.
[56]MAO J, WU YX, SONG SW, et al. Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5[J]. Materials Today Physics, 2017, 3:1-6.
[57]MAO J, WU YX, SONG SW, et al. Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials[J]. ACS Energy Letters, 2017, 2(10):2245-2250.
[58]IMASATO K, KANG S D, OHNO S, et al. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance[J]. Materials Horizons, 2018, 5(1):59-64.
[59]LI AR, FU CG, ZHAO XB, et al. High-Performance Mg3Sb2-xBix Thermoelectrics: Progress and Perspective[J]. Research (Wash D C), 2020(4):92-113.
[60]SHI XM, ZHANG XY, GANOSE A, et al. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics[J]. Materials Today Physics, 2021, 18:100362.
[61]KANNO T, TAMAKI H, SATO H K, et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01[J]. Applied Physics Letters, 2018, 112(3):033903.
[62]WOOD M, KUO J J, IMASATO K, et al. Improvement of Low-Temperature zT in a Mg3Sb2-Mg3Bi2 Solid Solution via Mg-Vapor Annealing[J]. Advanced Materials, 2019, 31(35):e1902337.
[63]LUO T, KUO J J, GRIFFITH K J, et al. Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg3Sb2-Based Thermoelectric Materials[J]. Advanced Functional Materials, 2021, 31(28):2100258.
[64]ZHANG JW, SONG LR, MAMAKHEL A, et al. High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application[J]. Chemistry of Materials, 2017, 29(12):5371-5383.
[65]ZHANG JW, SONG LR, BORUP K A, et al. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials[J]. Advanced Energy Materials, 2018, 8(16):1702776.
[66]GORAI P, ORTIZ B R, TOBERER E S, et al. Investigation of n-type doping strategies for Mg3Sb2[J]. Journal of Materials Chemistry A, 2018, 6(28):13806-13815.
[67]ZHANG F, CHEN C, LI S, et al. Enhanced Thermoelectric Performance in N-Type Mg3.2Sb1.5Bi0.5 by La or Ce Doping into Mg[J]. Advanced Electronic Materials, 2020, 6(3):1901391.
[68]ZHANG JW, SONG LR, IVERSEN B B. Improved Thermoelectric Properties of N-Type Mg3Sb2 through Cation-Site Doping with Gd or Ho[J]. ACS Applied Materials Interfaces, 2021, 13(9):10964-10971.
[69]CUI YL, ZHANG XL, DUAN B, et al. Band structure and thermoelectric properties of Al-doped Mg3−xAlxSb2 compounds[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16):15206-15213.
[70]TANI J I, ISHIKAWA H. One-step rapid synthesis of n-type Y-doped Mg3Sb2 by pulsed electric current sintering and investigation of its thermoelectric properties[J]. Materials Letters, 2020, 262:127056.
[71]SHI XM, SUN C, BU ZL, et al. Revelation of Inherently High Mobility Enables Mg3Sb2 as a Sustainable Alternative to n-Bi2Te3 Thermoelectrics[J]. Advanced Science (Weinh), 2019, 6(16):1802286.
[72]ZHANG JW, SONG LR, IVERSEN B B. Rapid One-Step Synthesis and Compaction of High-Performance n-Type Mg3Sb2 Thermoelectrics[J]. Angewandte Chemie, 2020, 132(11):4308-4312.
[73]KIHOU K, KUNIOKA H, NISHIATE H, et al. Thermoelectric properties of yttrium-doped Mg3(Sb,Bi)2 synthesized by melting method[J]. Journal of Materials Research and Technology, 2021, 10:438-444.
[74]XU C, LIANG Z, SHANG H, et al. Scalable synthesis of n-type Mg3Sb2-xBix for thermoelectric applications[J]. Materials Today Physics, 2021, 17:100336.
[75]KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds[J]. Energy & Environmental Science, 2018, 11(2):429-434.
[76]KUO J J, YU Y, KANG S D, et al. Mg Deficiency in Grain Boundaries of n-Type Mg3Sb2 Identified by Atom Probe Tomography[J]. Advanced Materials Interfaces, 2019, 6(13):1900429.
[77]XIA CL, CUI J, CHEN Y. Modulation of Band Alignment and Electron-Phonon Scattering in Mg3Sb2 via Pressure[J]. ACS Applied Electronic Materials, 2020, 2(9):2745-2749.
[78]AGNE M T, IMASATO K, ANAND S, et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature[J]. Materials Today Physics, 2018, 6:83-88.
[79]PARK J, XIA Y, OZOLIŅŠ V, et al. Optimal band structure for thermoelectrics with realistic scattering and bands[J]. npj Computational Materials, 2021, 7(1):43.
[80]LI J, ZHENG SQ, FANG T, et al. Computational prediction of a high ZT of n-type Mg3Sb2-based compounds with isotropic thermoelectric conduction performance[J]. Phys Chem Chem Phys, 2018, 20(11):7686-7693.
[81]OHNO S, IMASATO K, ANAND S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1):141-154.
[82]CHONG XY, GUAN PW, WANG Y, et al. Understanding the Intrinsic P-Type Behavior and Phase Stability of Thermoelectric α-Mg3Sb2[J]. ACS Applied Energy Materials, 2018, 1(11):6600-6608.
[83]ZHU Q, SONG SW, ZHU HT, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials[J]. Journal of Power Sources, 2019, 414:393-400.
[84]YIN L, CHEN C, ZHANG F, et al. Reliable N-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications[J]. Acta Materialia, 2020, 198:25-34.
[85]SHANG HJ, LIANG ZX, XU CC, et al. N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation[J]. Acta Materialia, 2020, 201:572-579.
[86]LIU ZH, SATO N, GAO WH, et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting[J]. Joule, 2021, 5(5):1196-1208.
[87]BU ZL, ZHANG XY, HU YX, et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K[J]. Energy & Environmental Science, 2021, 14(12):6506-6513.
[88]HU JS, GUO FK, GUO MC, et al. Promoted application potential of p-type Mg3Sb1.5Bi0.5 for the matched thermal expansion with its n-type counterpart[J]. Journal of Materiomics, 2020, 6(4):729-735.
[89]SUN W, SUI R, YUAN G, et al. Thermoelectric module design to improve lifetime and output power density[J]. Materials Today Physics, 2021, 18:100391.
[90]陈卫祥,陈文录,徐铸德,等.碳纳米管的特性及其高性能的复合材料[J].复合材料学报,2001(04):1-5.
[91]WANG XD, WANG H, LIU B. Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting[J]. Polymers (Basel), 2018, 10(11):1196.
[92]KHASIMSAHEB B, SINGH N K, BATHULA S, et al. The effect of carbon nanotubes (CNT) on thermoelectric properties of lead telluride (PbTe) nanocubes[J]. Current Applied Physics, 2017, 17(2):306-313.
[93]GAO WX, CHAI HD, WU F, et al. Enhanced thermoelectric properties of CNT dispersed and Na-doped Bi2Ba2Co2Oy composites[J]. Ceramics International, 2017, 43(7):5723-5727.
[94]SUN HR, JIA XP, LV P, et al. Improved thermoelectric performance of Te-doped and CNT dispersed CoSb3 skutterudite bulk materials via HTHP[J]. RSC Advances, 2015, 5(75):61324-61329.
[95]KIM K T, CHOI S Y, SHIN E H, et al. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite[J]. Carbon, 2013, 52:541-549.
[96]KIM K T, MIN T S, SON I. The Influence of Surface Functionalization on the Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(10):10777-10781.
[97]IMASATO K, OHNO S, KANG S D, et al. Improving the thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 by reducing excess Mg[J]. APL Materials, 2018, 6:016106.
[98]胡晓凯,张双猛,赵府,等.热电器件的界面和界面材料[J].无机材料学报,2019,34(03):269-278.

所在学位评定分委会
物理系
国内图书分类号
TM913
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336376
专题理学院_物理系
推荐引用方式
GB/T 7714
岑晓艺. N型Mg3Sb2基热电材料和发电器件的制备及研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032056-岑晓艺-物理系.pdf(6134KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[岑晓艺]的文章
百度学术
百度学术中相似的文章
[岑晓艺]的文章
必应学术
必应学术中相似的文章
[岑晓艺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。