[1] 刘洪, 李幼铭. 对利用震电效应勘探油气水的几点看法[J]. 石油物探, 1994 (02):94-101.
[2] ZHU Z, HAARTSEN M W, TOKSöZ M. Experimental studies of seismoelectric conversions in fluid‐saturated porous media[J]. Journal of Geophysical Research: Solid Earth, 2000,105(B12):28055-64.
[3] GROBBE N, REVIL A, ZHU Z, et al. Seismoelectric exploration: Theory, experiments, and applications[M]: John Wiley & Sons, 2020.
[4] PRIDE S. Governing equations for the coupled electromagnetics and acoustics of porous media[J]. Physical Review B, 1994,50:15678.
[5] ZHU Z, TOKSöZ M N, BURNS D R. Electroseismic and seismoelectric measurements of rock samples in a water tankElectroseismic and seismoelectric measurements[J]. Geophysics, 2008,73(5):E153-E64.
[6] HAINES S S, PRIDE S R, KLEMPERER S L, et al. Seismoelectric imaging of shallow targets[J]. Geophysics, 2007,72:G9-G20.
[7] JOUNIAUX L, ZYSERMAN F I. Seismo-electrics, electro-seismics, and seismo-magnetics for earth sciences[J]. 2015.
[8] MONACHESI L B, ZYSERMAN F I, JOUNIAUX L. An analytical solution to assess the SH seismoelectric response of the vadose zone[J]. Geophysical Journal International, 2018,213:1999-2019.
[9] DZIERAN L, THORWART M, RABBEL W, et al. Quantifying interface responses with seismoelectric spectral ratios[J]. Geophysical Journal International, 2019,217(1):108-21.
[10] THOMPSON A H, HORNBOSTEL S, BURNS J, et al. Field tests of electroseismic hydrocarbon detectionElectroseismic hydrocarbon detection[J]. Geophysics, 2007,72:N1-N9.
[11] HU H, LIU J, WANG H, et al. Simulation of Acousto‐Electric Well Logging Based on Simplifed Pride Equations[J]. Chinese Journal of Geophysics, 2003,46:362-72.
[12] HU H, GUAN W, HARRIS J M. Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation[J]. The Journal of the Acoustical Society of America, 2007,122:135-45.
[13] KULESSA B, GARAMBOIS S, DIETRICH M, et al. Seismoelectric Characterization of Ice Sheets and Glaciers. Seismoelectric Exploration: Theory, Experiments, and Applications2020. p. 383-99.
[14] BUTLER K E, KULESSA B, PUGIN A J M. Multimode seismoelectric phenomena generated using explosive and vibroseis sources[J]. Geophysical Journal International, 2018,213:836-50.
[15] DUPUIS J, BUTLER K, KEPIC A, et al. Anatomy of a seismoelectric conversion: measurements and conceptual modeling in boreholes penetrating a sandy aquifer[J]. Journal of Geophysical Research: Solid Earth, 2009,114(B10):B10306.
[16] REN H, HUANG Q, CHEN X. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media[J]. Earthquake Science, 2010,23:167-76.
[17] ZHENG X, REN H, HUANG Q, et al. Numerical simulation of seismoelectric wave-fields with close or same depths of the sources and receivers[C]// American Geophysical Union, Fall Meeting. Washington D.C., America. 2018.
[18] IVANOV A. Effect of electrization of earth layers by elastic waves passing through them[J]. Doklady Akademii Nauk SSSR, 1939,24(1):42-5.
[19] MARTNER S T, SPARKS N R. The electroseismic effect[J]. Geophysics, 1959,24:297-308.
[20] PARKHOMENKO E I, TSZE-SAN C. A study of the influence of moisture on the magnitude of the seismoelectric effect in sedimentary rocks by a laboratory method[J]. Bull (Izv) Acad Sci, USSR, Geophys, 1964,2:115-8.
[21] NEEV J, YEATTS F R. Electrokinetic effects in fluid-saturated poroelastic media[J]. Physical Review B, 1989,40:9135.
[22] THOMPSON A H, GIST G A. Geophysical applications of electrokinetic conversion[J]. The Leading Edge, 1993,12:1169-73.
[23] BIOT M A. Theory of elastic waves in a fluid-saturated porous solid. I. Low frequency range[J]. The Journal of the Acoustical Society of America, 1956,28:168-78.
[24] BIOT M A. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2):179-91.
[25] HAARTSEN M W, PRIDE S R. Electroseismic waves from point sources in layered media[J]. Journal of Geophysical Research: Solid Earth, 1997,102:24745-69.
[26] HAN Q, WANG Z. Time‐domain simulation of SH-wave‐induced electromagnetic field in heterogeneous porous media: A fast finite‐element algorithm[J]. Geophysics, 2001,66(2):448-61.
[27] GARAMBOIS S, DIETRICH M. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media[J]. Journal of Geophysical Research, 2002,107:ESE 5-1-ESE 5-18.
[28] HAINES S S, PRIDE S R. Seismoelectric numerical modeling on a grid[J]. Geophysics, 2006,71:N57-N65.
[29] REN H, HUANG Q, CHEN X. Analytical regularization of the high-frequency instability problem in numerical simulation of seismoelectric wave-fields in multi-layered porous media[J]. Chinese Journal of Geophysics, 2010,53:506-11.
[30] HU H, GAO Y. Electromagnetic field generated by a finite fault due to electrokinetic effect[J]. Journal of Geophysical Research: Solid Earth, 2011,116.
[31] REN H, CHEN X, HUANG Q. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media[J]. Geophysical Journal International, 2012,188:925-44.
[32] WARDEN S, GARAMBOIS S, JOUNIAUX L, et al. Seismoelectric wave propagation numerical modelling in partially saturated materials[J]. Geophysical Journal International, 2013,194:1498-513.
[33] BORDES C, SéNéCHAL P, BARRìèRE J, et al. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon[J]. Geophysical Journal International, 2015,200:1317-35.
[34] GROBBE N. Coupled poroelastic waves and electromagnetic fields in layered media: theory, modeling, and interferometric synthesis[D]. Delft. Delft University of Technology, 2016.
[35] 胡恒山, 王克协. 井孔周围轴对称声电耦合波:理论(I)[J]. 测井技术, 1999 (06):427-32.
[36] 胡恒山, 王克协. 井孔周围轴对称声电耦合波:声电效应测井数值模拟(Ⅱ)[J]. 测井技术, 2000 (01):3-13+9-78.
[37] 崔志文. 多孔介质声学模型与多极源声电效应测井和多极随钻声测井的理论与数值研究[D]. 长春:. 吉林大学, 2004.
[38] 关威, 姚泽鑫, 胡恒山. 声电效应测井的有限差分模拟[J]. 地球物理学报, 2017: 4526.
[39] 丁浩然, 崔志文, 吕伟国, 等. 双声源激发随钻测井声电耦合波理论模拟[J]. 地球物理学报, 2016, 59(3524-32.
[40] BUTLER K E, RUSSELL R D, KEPIC A W, et al. Measurement of the seismoelectric response from a shallow boundary[J]. Geophysics, 1996,61:1769-78.
[41] MIKHAILOV O V, HAARTSEN M W, TOKSöZ M N. Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling[J]. Geophysics, 1997,62:97-105.
[42] MIKHAILOV O V, QUEEN J, TOKSöZ M N. Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones[J]. Geophysics, 2000,65:1098-112.
[43] GARAMBOIS S, DIETRICH M. Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[J]. Geophysics, 2001,66:1417-30.
[44] KULESSA B, MURRAY T, RIPPIN D. Active seismoelectric exploration of glaciers[J]. Geophysical Research Letters, 2006,33.
[45] DUPUIS J C, BUTLER K E. Vertical seismoelectric profiling in a borehole penetrating glaciofluvial sediments[J]. Geophysical Research Letters, 2006,33.
[46] DUPUIS J C, BUTLER K E, KEPIC A W. Seismoelectric imaging of the vadose zone of a sand aquifer[J]. Geophysics, 2007,72:A81-A5.
[47] ZHU Z, HAARTSEN M W, TOKSöZ M N. Experimental studies of electrokinetic conversions in fluid‐saturated borehole models[J]. Geophysics, 1999,64(5):1349-56.
[48] 胡恒山, 李长文, 王克协, 等. 声电效应测井模型实验研究[J]. 测井技术, 2001, 25(7.
[49] BORDES C, JOUNIAUX L, DIETRICH M, et al. First laboratory measurements of seismo‐magnetic conversions in fluid‐filled Fontainebleau sand[J]. Geophysical Research Letters, 2006,33.
[50] LIU Z, YUAN L, ZHANG X, et al. A laboratory seismoelectric measurement for the permafrost model with a frozen–unfrozen interface[J]. Geophysical Research Letters, 2008,35:L21404.
[51] GLOVER P W J, WALKER E, RUEL J, et al. Frequency-dependent streaming potential of porous media—Part 2: Experimental measurement of unconsolidated materials[J]. International Journal of Geophysics, 2012,2012.
[52] ZHU Z, TOKSöZ M N. Experimental measurements of the streaming potential and seismoelectric conversion in Berea sandstone[J]. Geophysical Prospecting, 2013,61:688-700.
[53] WANG J, HU H S, GUAN W. Experimental measurements of seismoelectric signals in borehole models[J]. Geophysical Journal International, 2015,203(3):1937-45.
[54] PENG R, DI B, WEI J, et al. Experimental study of the seismoelectric interface response in wedge and cavity models[J]. Geophysical Journal International, 2017,210:1703-20.
[55] WANG J, ZHU Z, GAO Y, et al. Measurements of the seismoelectric responses in a synthetic porous rock[J]. Geophysical Journal International, 2020,222(1):436-48.
[56] WANG J, ZHU Z, GUAN W, et al. Experimental studies on the mechanism of seismoelectric logging while drilling with multipole source[J]. Geophysical Journal International, 2021,225(1):445-55.
[57] PRIDE S R, HAARTSEN M W. Electroseismic wave properties[J]. The Journal of the Acoustical Society of America, 1996,100:1301-15.
[58] SLOB E C, MULDER M. Seismoelectromagnetic homogeneous space Green’s functions[J]. Geophysics, 2016,81(4):F27-F40.
[59] REN H, HUANG Q, CHEN X. Quantitative understanding on the amplitude decay characteristic of the evanescent electromagnetic waves generated by seismoelectric conversion[J]. Pure and Applied Geophysics, 2018,175:2853-79.
[60] REN H, HUANG Q, CHEN X. Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid–porous interface[J]. Geophysical Journal International, 2016,204:147-66.
[61] 王克协, 崔志文, 宋若龙, 等. 软地层声测井横波首至是倏逝波的理论证明[C]. 中国地球物理·2009, 2009.
[62] 钟锡华. 现代光学基础[M]: 现代光学基础, 2012.
[63] 安艺敬一. 定量地震学[M]: 定量地震学, 1986.
[64] ZHENG X-Z, REN H, BUTLER K E, et al. Seismoelectric and Electroseismic Modeling in Stratified Porous Media With a Shallow or Ground Surface Source[J]. Journal of Geophysical Research: Solid Earth, 2021,126(9):e2021JB021950.
[65] RUSSELL R, BUTLER K, KEPIC A, et al. Seismoelectric exploration[J]. The Leading Edge, 1997,16(11):1611-5.
[66] REN H, HUANG Q, CHEN X. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium[J]. Geophysical Journal International, 2016,206:205-20.
[67] DIETRICH M, DEVI M S, GARAMBOIS S, et al. A novel approach for seismoelectric measurements using multielectrode arrangements–I: theory and numerical experiments[J]. Geophysical Journal International, 2018,215:61-80.
[68] DZIERAN L, THORWART M, RABBEL W. Seismoelectric monitoring of aquifers using local seismicity—a feasibility study[J]. Geophysical Journal International, 2020,222(2):874-92.
[69] 王宝善, 葛洪魁, 王彬, 等. 利用人工重复震源进行地下介质结构及其变化研究的探索和进展[J]. 中国地震, 2016, 32(168-79.
[70] BEAMISH D. Characteristics of near-surface electrokinetic coupling[J]. Geophysical Journal International, 1999,137:231-42.
[71] STRAHSER M H, WOLFGANG R, SCHILDKNECHT F. Polarisation and slowness of seismoelectric signals: a case study[J]. Near Surface Geophysics, 2007,5(2):97-114.
[72] PENG R, DI B, WEI J, et al. Signal characteristics of electroseismic conversion[J]. Journal of Geophysics and Engineering, 2018,15(2):377-85.
[73] WHITE B S. Asymptotic theory of electroseismic prospecting[J]. SIAM Journal on Applied Mathematics, 2005,65:1443-62.
[74] WHITE B S, ZHOU M. Electroseismic prospecting in layered media[J]. SIAM Journal on Applied Mathematics, 2006,67(1):69-98.
[75] GUAN W, HU H. Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation[J]. Journal of computational physics, 2008,227:5633-48.
[76] ZYSERMAN F I, GAUZELLINO P M, SANTOS J E. Finite element modeling of SHTE and PSVTM electroseismics[J]. Journal of Applied Geophysics, 2010,72:79-91.
[77] ZYSERMAN F I, GAUZELLINO P M, SANTOS J E. Numerical evidence of gas hydrate detection by means of electroseismics[J]. Journal of Applied Geophysics, 2012,86:98-108.
[78] WANG D, GAO Y, YAO C, et al. Seismoelectric and electroseismic responses to a point source in a marine stratified model[J]. Geophysical Prospecting, 2020,68(6):1958-79.
[79] WANG D, GAO Y, TONG P, et al. Electroseismic and seismoelectric responses at irregular interfaces: Possible application to reservoir exploration[J]. Journal of Petroleum Science and Engineering, 2021,202:108513.
[80] BOHLEN T, KUGLER S, KLEIN G, et al. 1.5 D inversion of lateral variation of Scholte-wave dispersion[J]. Geophysics, 2004,69(2):330-44.
[81] KUGLER S, BOHLEN T, FORBRIGER T, et al. Scholte-wave tomography for shallow-water marine sediments[J]. Geophysical Journal International, 2007,168(2):551-70.
[82] EWING J, CARTER J A, SUTTON G H, et al. Shallow water sediment properties derived from high-frequency shear and interface waves[J]. Journal of Geophysical Research: Solid Earth, 1992,97(B4):4739-62.
[83] KLEIN G, BOHLEN T, THEILEN F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments[J]. Marine Geophysical Researches, 2005,26(2-4):287-315.
[84] SCHOLTE J. On Rayleigh waves in visco-elastic media[J]. Physica, 1947,13(4-5):245-50.
[85] RITZWOLLER M H, LEVSHIN A L. Estimating shallow shear velocities with marine multicomponent seismic data[J]. Geophysics, 2002,67(6):1991-2004.
[86] MUYZERT E. Scholte wave velocity inversion for a near surface S‐velocity model and PS‐statics. SEG Technical Program Expanded Abstracts 20002000. p. 1197-200.
[87] SHTIVELMAN V. Estimating seismic velocities below the sea‐bed using surface waves[J]. Near Surface Geophysics, 2004,2(4):241-7.
[88] PARK C B, MILLER R D, XIA J, et al. Underwater MASW to evaluate stiffness of water-bottom sediments[J]. The Leading Edge, 2005,24(7):724-8.
[89] NGUYEN X N, DAHM T, GREVEMEYER I. Inversion of Scholte wave dispersion and waveform modeling for shallow structure of the Ninetyeast Ridge[J]. Journal of Seismology, 2009,13(4):543-59.
[90] WILKEN D, WöLZ S, MüLLER C, et al. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis[J]. Journal of Applied Geophysics, 2009,68(1):117-23.
[91] VANNESTE M, MADSHUS C, SOCCO V L, et al. On the use of the Norwegian Geotechnical Institute's prototype seabed-coupled shear wave vibrator for shallow soil characterization – I. Acquisition and processing of multimodal surface waves[J]. Geophysical Journal International, 2011,185(1):221-36.
[92] SOCCO V L, BOIERO D, MARASCHINI M, et al. On the use of the Norwegian Geotechnical Institute's prototype seabed-coupled shear wave vibrator for shallow soil characterization - II. Joint inversion of multimodal Love and Scholte surface waves[J]. Geophysical Journal International, 2011,185(1):237-52.
[93] POTTY G R, MILLER J H, editors. Measurement and modeling of Scholte wave dispersion in coastal waters. AIP Conference Proceedings; 2012: American Institute of Physics.
[94] WANG Y, LI Z, YOU Q, et al. Shear-wave velocity structure of the shallow sediments in the Bohai Sea from an ocean-bottom-seismometer survey[J]. Geophysics, 2016,81(3):ID25-ID36.
[95] JOHANSEN T A, RUUD B O. Characterization of seabed properties from Scholte waves acquired on floating ice on shallow water[J]. Near Surface Geophysics, 2020,18(1-Quantitative Geophysical Characterisation of Marine Near‐Surface):49-59.
[96] WANG Y, LI Z, GENG J, et al. Seismic imaging of S-wave structures of shallow sediments in the East China Sea using OBN multicomponent Scholte-wave data[J]. Geophysics, 2020,85(6):EN87-EN104.
[97] WANG Y, YOU Q, HAO T. Estimating the Shear-Wave Velocities of Shallow Sediments in the Yellow Sea Using Ocean-Bottom-Seismometer Multicomponent Scholte-Wave Data. Front[J]. Earth Sci, 2022,10:812744.
[98] BOIERO D, WIARDA E, VERMEER P. Surface- and guided-wave inversion for near-surface modeling in land and shallow marine seismic data[J]. The Leading Edge, 2013,32(6):638-46.
[99] 王元. 海洋面波探测技术及其应用[D]. 中国科学院大学, 2016.
[100] GROBBE N, RIDDER S A L D. Seismoelectric surface-wave analysis for characterization of formation properties, using dispersive relative spectral amplitudes[J]. Geophysics, 2021,86(3):A27-A31.
[101] YUAN S, REN H, HUANG Q, et al. Refining Higher Modes of Rayleigh Waves Using Seismoelectric Signals Excited by a Weight-Drop Source: Study From Numerical Simulation Aspect[J]. Journal of Geophysical Research: Solid Earth, 2021,126(5):e2020JB021336.
[102] BOUCHON M, AKI K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977,67(2):259-77.
[103] ZHANG H-M, CHEN X-F, CHANG S. Peak‐Trough Averaging Method and its Applications to Calculation of Synthetic Seismograms with Sallow Focuses[J]. Chinese Journal of Geophysics, 2001,44(6):791-9.
[104] ZHANG H-M, CHEN X-F, CHANG S. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths. Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume: Springer; 2003. p. 467-86.
[105] HäUSLER M, SCHMELZBACH C, SOLLBERGER D. The Galperin source: A novel efficient multicomponent seismic source[J]. Geophysics, 2018,83(6):P19-P27.
[106] WANG J, WU G, CHEN X. Frequency‐Bessel transform method for effective imaging of higher‐mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019,124(4):3708-23.
[107] 张海明. 地震学中的Lamb问题(上)[M]. 北京: 科学出版社, 2021.
[108] CHEN X. Seismogram synthesis in multi-layered half-space Part I. Theoretical formulations[J]. Earthquake Research in China, 1999,13(2):149-74.
[109] 任恒鑫. 流体饱和孔隙介质中震电效应的理论研究[D]. 北京大学, 2009.
[110] AKI K U, RICHARDS P G. Quantitative seismology: Theory and methods[M]. San Francisco: W H Freeman, 1980.
[111] BOUCHON M. The complete synthesis of seismic crustal phases at regional distances[J]. Journal of Geophysical Research: Solid Earth, 1982,87:1735-41.
[112] BOUCHON M. A Review of the Discrete Wavenumber Method[J]. Pure and Applied Geophysics, 2003,160(3):445-65.
[113] LUCO J E, APSEL R J. On the Green's functions for a layered half-space. Part I[J]. Bulletin of the Seismological Society of America, 1983,73(4):909-29.
[114] KENNETT B. Seismic wave propagation in stratified media[M]. New York: Cambridge University Press, 1983.
[115] TSANG L, RADER D. Numerical evaluation of the transient acoustic waveform due to a point source in a fluid‐filled borehole[J]. Geophysics, 1979,44(10):1706-20.
[116] ZHENG X, HU H, GUAN W, et al. Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect[J]. Geophysics, 2015,80(5):D417-D27.
[117] CHENG C H, TOKSöZ M N. Elastic wave propagation in a fluid‐filled borehole and synthetic acoustic logs[J]. Geophysics, 1981,46(7):1042-53.
[118] PARRA J O, STURDIVANT V R, XU P C. Interwell seismic transmission and reflection through a dipping low‐velocity layer[J]. The Journal of the Acoustical Society of America, 1993,93(4):1954-69.
[119] APSEL R J, LUCO J E. On the Green's functions for a layered half-space. Part II[J]. Bulletin of the Seismological Society of America, 1983,73(4):931-51.
[120] HISADA Y. An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths[J]. Bulletin of the Seismological Society of America, 1994,84(5):1456-72.
[121] HISADA Y. An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (Part 2)[J]. Bulletin of the Seismological Society of America, 1995,85(4):1080-93.
[122] DAHLQUIST G, BJöRCK Å. Numerical methods[M]. Englewood Cliffs,NJ: Prentice Hall, 1974.
[123] GROBBE N, SLOB E C, THORBECKE J. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling[J]. Geophysical Journal International, 2016,206(1):152-90.
[124] 王治. 分层弹性与孔隙介质中弹性波场的互易关系[D]. 哈尔滨工业大学, 2016.
[125] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993,115(2):391-409.
[126] BUTLER K E, RUSSELL R D. Subtraction of powerline harmonics from geophysical records[J]. Geophysics, 1993,58(6):898-903.
[127] DUPUIS J C, KEPIC A W, BUTLER K E. Design of Field Instrumentation and Noise Removal Techniques for Seismoelectric Measurements[J]. Seismoelectric Exploration: Theory, Experiments, and Applications, 2020:319-45.
[128] HECHT E. Optics (5th ed.)[M]. Boston: Pearson Education, 2017.
[129] HRON F, MIKHAILENKO B. Discovery of a New Non-Geometrical S Arrival Generated at Free Interface. Developments in Solid Earth Geophysics. 15: Elsevier; 1983. p. 293-7.
[130] HORNBOSTEL S C, THOMPSON A H. Waveform design for electroseismic exploration[J]. Geophysics, 2007,72(2):Q1-Q10.
[131] 真齐辉, 底青云. 高频大功率 CSAMT 发射技术研究[J]. 地球物理学报, 2017,60(11):4160-4.
[132] CONSTABLE S, KANNBERG P, CALLAWAY K, et al., editors. Mapping Shallow Geological Structure With Towed Marine CSEM Receivers. 2012 SEG Annual Meeting; 2012. SEG-2012-0839.
[133] CHEN W, CHEN X. Modal solutions in stratified multi-layered fluid-solid half-space[J]. Science in China Series D: Earth Sciences, 2002,45(4):358-65.
[134] 夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015.
[135] 王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法[D]. 中国科学技术大学, 2019.
[136] WU G X, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020,125(1):e2019JB018213.
[137] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020,196:104372.
[138] MA Q, PAN L, WANG J-N, et al. Crustal S-Wave Velocity Structure Beneath the Northwestern Bohemian Massif, Central Europe, Revealed by the Inversion of Multimodal Ambient Noise Dispersion Curves[J]. Frontiers in Earth Science, 2022,10.
[139] 吴高雄. 基于频率-贝塞尔变换方法从背景噪声中提取高阶面波频散曲线并反演美国大陆三维横波速度结构[D]. 中国科学技术大学, 2020.
[140] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020,125(3):e2019JB018511.
[141] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 中国科学技术大学, 2020.
[142] 任恒鑫, 杨振涛, 陈晓非, 等. 一种震电波场联合提取瑞雷波频散特征的面波勘探方法: 中国, ZL202010142633.1 [P]. 2020-12-15.
[143] 袁士川, 任恒鑫, 黄清华, 等. 震电波场的瑞雷波频散特性及其潜在应用[C]. 2020年中国地球科学联合学术年会, 2020.
[144] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves with Modified Frequency–Bessel Method[J]. Bulletin of the Seismological Society of America, 2021,112(1):143-52.
[145] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019, 62(298-305.
[146] 何耀锋, 陈蔚天, 陈晓非. 利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J]. 地球物理学报, 2006: 1074-81.
[147] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J]. Geophysical Journal International, 2003,153(3):719-34.
[148] WU B, CHEN X. Stable, accurate and efficient computation of normal modes for horizontal stratified models[J]. Geophysical Journal International, 2016,206(2):1281-300.
[149] 夏季. 大容量气枪震源特性研究[D]. 中国地震局, 2017.
[150] WU B, CHEN X. Accurate computation of leaky modes for anomalous layered models[J]. Annals of Geophysics, 2017,60(6):S0663-S.
[151] ROTH M, HOLLIGER K, GREEN A G. Guided waves in near-surface seismic surveys[J]. Geophysical Research Letters, 1998,25(7):1071-4.
[152] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019,216(2):1276-303.
[153] FRIVIK S A. Determination of shear properties in the upper seafloor using seismo-acoustic interface waves[D]. Norway. Norges teknisk-naturvitenskapelige universitet, Trondheim, 1998.
[154] 何展翔, 余刚. 海洋电磁勘探技术及新进展[J]. 勘探地球物理進展, 2008,31(1):2-9.
[155] HOLTEN T, FLEKKøY E G, SINGER B, et al. Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration[J]. First Break, 2009,27(5).
[156] WENZ G M. Acoustic ambient noise in the ocean: Spectra and sources[J]. The Journal of the Acoustical Society of America, 1962,34(12):1936-56.
[157] HUANG Q, REN H, ZHANG D, et al. Medium effect on the characteristics of the coupled seismic and electromagnetic signals[J]. Proceedings of the Japan Academy, Series B, 2015,91:17-24.
[158] SUN Y-C, UYESHIMA M, REN H, et al. Numerical simulations to explain the coseismic electromagnetic signals: a case study for a M 5.4 aftershock of the 2016 Kumamoto earthquake[J]. Earth, Planets and Space, 2019,71(1):1-24.
[159] GAO Y, ZHAO G, CHONG J, et al. Coseismic electric and magnetic signals observed during 2017 Jiuzhaigou M w 6.5 earthquake and explained by electrokinetics and magnetometer rotation[J]. Geophysical Journal International, 2020,223(2):1130-43.
[160] GAO Y, HU H. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium[J]. Geophysical Journal International, 2010,181:873-96.
修改评论