中文版 | English
题名

铜催化的烷基卤代烃与烯基硼酸酯立体汇聚式不对称自由基交叉偶联反应

其他题名
COPPER-CATALYZED ENANTIOCONVERGENT RADICAL CROSS-COUPLING OF ALKYL HALIDES WITH ALKENYLBORONATE ESTERS
姓名
姓名拼音
GUO Kaixin
学号
11930104
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
刘心元,顾强帅
导师单位
前沿与交叉科学研究院;化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       手性烯烃广泛存在于天然产物和药物分子中,并且是合成化学中重要的合成单元,因此手性烯烃的合成引起了广泛重视。 传统构建手性烯烃的方法主要通过手性原料的官能团转化获取,例如手性炔烃的加氢反应和手性醛的 Wittig 反应等。 因此, 通过没有手性或外消旋的起始原料实现催化不对称合成是一类更加直接和高效的方法。 在这方面,利用廉价的过渡金属催化外消旋烷基卤代烃与有机金属试剂的立体汇聚式 C(sp3)-C 交叉偶联反应是合成手性分子的有力工具。 其中,烷基卤代烃与烯基金属试剂的立体汇聚式自由基 C(sp3)-C(sp2)是一种很有吸引力的构建手性烯烃的策略。 目前的方法严重依赖于对空气/水分敏感的烯基锌、硅、锆和镁试剂的使用。相比之下,烯基硼酸酯是一类易制备、对空气/水分稳定的、 并与许多官能团兼容的烯基亲核试剂。 因此,发展烷基卤代烃与烯基硼酸酯的不对称自由基 C(sp3)–C(sp2)交叉偶联,从而构建手性烯烃类化合物具有非常重要的研究意义。

       该论文中, 我们首先对合成手性烯烃的不对称催化方法进行了简单的综述,总结了目前合成手性烯烃的一些策略,并给出它们相应尚未解决的问题。 之后我们阐述了通过设计新型 Hemilabile N,N,N 手性阴离子配体(具有强和弱的配位基团,呈现“半不稳定性”),来实现铜催化烷基卤代烃与烯基硼酸酯的立体汇聚式 不对称自由基 交叉偶联反应。 新设计的Hemilabile N,N,N 配体在反应启动时,利用三齿配位模式的强还原性使反应经历自由基机制从而易于产生前手性中间体,并基于三齿配位模式使得铜中心处于配体饱和,抑制烯基硼自身偶联副反应;在手性控制时,通过双齿配位模式更好地实现高活性自由基对映选择性控制。 烯烃的转化突出了它在合成各种手性骨架(如醇、羧酸和酯)中的合成潜力。 它可以进一步通过连续的 C-H 溴化/交叉偶联过程,应用于生物活性分子的后期官能化。

       总之, 我们实现了一种铜催化的烷基卤代烃与烯基硼酸酯立体汇聚式自由基 C(sp3)-C(sp2)交叉偶联反应。该反应包括大量的苄溴和杂环苄溴,以及乙烯基、单/二取代的烯基硼酸酯, 超过 45 个底物(ee 值最高可达>99%) 的手性烯烃化合物的构建, 具有广泛的官能团多样性。

 

其他摘要

Chiral alkenes are important structure motifs in natural products and pharmaceuticals, and are also valuable synthetic intermediates in organic chemistry. Therefore, great afforts has been devoted towards their synthesis. Traditionally, chiral alkenes are mainly obtained from the transformation of chiral starting materials, such as hydrogenation of chiral alkynes, Wittig reaction of chiral aldehydes, etc. In this context, the catalytic asymmetric synthesis represents an appealing tool and has attracted great attention since no chiral starting materials are needed. In this aspect, the earth-abundant transition metal-catalyzed enantioconvergent C(sp3)–C cross-coupling of racemic alkyl halides with organometallic reagents represents a powerful tool in the synthesis of chiral molecules. Among others, the enantioconvergent radical C(sp3)-C(sp2) cross-coupling of alkyl halides with alkenylmetallic reagents represents an appealing strategy to access chiral alkenes. The current methods rely heavily on the utilization of alkenyl zinc, silicon, zirconium, and magnesium reagents, which are generally sensitive towards air/moisture and need cautious storage in solution. In comparison, alkenylboronate esters are air-/moisture-stable, easily accessible, and compatible with many functional groups. Therefore, the development of a practical enantioconvergent C(sp3)-C(sp2) coupling of alkyl halides with alkenylboronate esters is highly desirable.

In this thesis, we firstly introduced the reported catalytic asymmetric synthesis of chiral alkenes and summarized the unsolved problems of the known strategies. Afterwards, we described our efforts in developing a copper-catalyzed enantioconvergent radical cross-coupling of alkyl halides with alkenylboronate esters. Key to the success is rational design of hemilabile N,N,N-ligands. Thus, the newly designed ligand could promote the radical cross-coupling process and suppress the homocoupling of alkenlyboronate esters in the tridentate form. Meanwhile, it also delivers the excellent enantiocontrol over highly reactive alkyl radicals in the bidentate form. Straightforward transformations highlight its synthetic potential in the synthesis of various chiral building blocks, such as alcohols, carboxylic acids, and esters. It can be further applied in the late-stage functionalization of bioactive molecules via a sequential C–H bromination/cross-coupling process.

In sum, we have described a copper-catalyzed enantioconvergent radical C(sp3)–C cross-coupling of alkyl halides with alkenylboronate esters for expedient synthesis of chiral alkenes. More than 45 examples have been demonstrated in up to >99% ee. The reaction covers a number of benzyl and heterobenzyl bromides, as well as vinyl-, mono/di-substituted alkenylboronate esters with broad functional group diversity.
 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] For selected reviews, see: (a) NEGISHI EI, HUANG ZH, WANG GW, et al. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy[J]. Accounts of Chemiacl Research, 2008, 41(11):1474–1485. (b) RYGUS J P G, CRUDDEN C M. Enantiospecific and Iterative Suzuki-Miyaura Cross-Couplings[J]. Journal of the American Chemical Society, 2017, 139(50):18124-18137. (c) MA XH, MURRARY B, BISCOE M R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles[J]. Nature Reviews Chemistry, 2020, 4(11):584-599.
[2] For selected reviews, see: (a) HUANG LB, ARNDT M, GOOßEN K, et al. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation[J]. Chemical Reviews, 2015, 115(7) 2596–2697. (b) PIRNOT M T, WANG Y-M, BUCHWALD S L. Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes[J]. Angewant Chemie Interantional Edition, 2016, 55, 48–57.
[3] For selected reviews, see: (a) LIN J, SONG RJ, HU M, et al. Recent Advances in the Intermolecular Oxidative Difunctionalization of Alkenes[J]. The Chemical Record, 2018, 19(2-3): 440-451.(b) LAN X-W, WANG N-X, XING YL. Recent Advances in Radical Difunctionalization of Simple Alkenes[J]. European Journal of Organic Chemistry, 2017, 39, 5281-5251. (c) LI Z-L, FANG G-C, GU Q-S, et al. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes[J]. Chemical Society Reviews, 2020, 49(1): 32-48.
[4] 张永军, 王小平, 厚苏伟. 高密度聚乙烯复合材料性能改进的研究进展[J]. 塑料科技, 2021, 49(5):5.
[5] SHI M, XU Y-M. Catalytic, Asymmetric Baylis–Hillman reaction of imines with methyl vinyl ketone and methyl acrylate[J]. Angewandte Chemie International Edition, 2010, 41(23):4507-4510.
[6] QU J, HELMCHEN G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis[J]. Accounts of Chemical Research, 2017, 50(10): 2539–2555
[7] SHI M, CHEN L-H, LI C-Q. Chiral phosphine Lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with activated olefins[J]. Journal of the American Chemical Society, 2005, 127(11): 3790-3800.
[8] a) BRUICE P Y, Organic Chemistry; 6 ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, 2011. b) TROST B M, CRAWLAY M L, Asymmetric Transition-MetalCatalyzed Allylic Alkylations:  Applications in Total Synthesis[J]. Chemical Reviews, 2003, 103, 2921–2944. c) Pàmies O, Margalef J, Cañellas S, et al. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications[J]. Chemical Reviews, 2021, 121, 4373–4505.
[9] YORIMITSU H, OSHIMA K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes[J]. Angewandte Chemie International Edition, 2005, 44(29): 4435-4439.
[10] Berkowitz D B, Maiti G. Following an ISES lead: the first examples of asymmetric Ni(0)-mediated allylic amination.[J]. Organic Letters, 2004, 6(16): 2661-2664.
[11] 胡跃飞,林国强等,现代有机反应:金属催化反应 II[M],化学工业出版社,2012.
[12] CHERNEY A H, REISMAN S E. Nickel-catalyzed asymmetric reductive crosscoupling between vinyl and benzyl electrophiles[J]. Journal of the American Chemical Society, 2014, 136(41): 14365-14368.
[13] HOFSTRA J L, CHERNEY A H, ORDNER C M, et al. Synthesis of enantioenriched allylic silanes via nickel-catalyzed reductive cross-coupling[J]. Journal of the American Chemical Society, 2018, 140(1): 139-142.
[14] DELANO T J, REISMAN S E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis[J]. ACS catalysis, 2019, 9(8): 6751 -6754.
[15] LI TT, CHENG XK, LU JM, et al. Enantioselective Reductive Cross-Coupling of Aryl/Alkenyl Bromides with Benzylic Chlorides via Photoredox/Biimidazoline Nickel Dual Catalysis[J]. Chinese Journal of Chemistry, 2022, 40, 1033-1038.
[16] SUZUKI N, HOFSTRA J L, POREMBA K E, et al. Nickel-catalyzed enantioselective cross-coupling of N-hydroxyphthalimide esters with vinyl bromides[J]. Organic letters, 2017, 19(8): 2150-2153.
[17] For selected reviews, see: (a) LI ZP, BOHLE D S, LI C-J. Cu-catalyzed crossdehydrogenative coupling: A versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds[J]. Proceedings of the National Academy of Sciences, 2006, 103(24): 8928-8933. (b) LI C-J. Cross-dehydrogenative coupling (CDC): exploring C− C bond formations beyond functional group transformations[J]. Accounts of chemical research, 2009, 42(2): 335-344
[18] Zhao R, Feng G, Xin X, et al. Oxidative C-H alkynylation of 3,6-dihydro-2Hpyrans[J]. Chinese Chemical Letters, 2019(7):1432-1434.
[19] For selected reviews, see: (a) WANG P, GAO XL, HUANG PF, et al. Recent Advances in Electrochemical Oxidative Cross-Coupling of Alkenes with H2 Evolution[J]. ChemCatChem, 2020, 12(1), 27-40. (b) LIU C, LIU D, LEI AW Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings[J]. Accounts of Chemical Research, 2014, 47(12):3459-3470.
[20] ZHANG G, MA YX, WANG SL, et al. Enantioselective metal/organo-catalyzed aerobic oxidative sp3 C–H olefination of tertiary amines using molecular oxygen as the sole oxidant[J]. Journal of the American Chemical Society, 2012, 134(30): 12334-12337.
[21] MA YX, ZHANG G, ZHANG JL, et al. Organocatalyzed asymmetric oxidative coupling of α-C(sp3)-H of tertiary amines to α, β-unsaturated γ-butyrolactam: Synthesis of MBH-type products[J]. Organic Letters, 2014, 16(20): 5358-5361.
[22] ICHIRO M, YUZO F. Aromatic Substitution of Olefins by Palladium Salts[J]. Synthesis, 1973(9): 524-533.
[23] MIKAMI K, HATANO M, TERADA M. Catalytic CH bond activation-asymmetric olefin coupling reaction: The first example of asymmetric Fujiwara -Moritani reaction catalyzed by chiral palladium (II) complexes[J]. Chemistry letters, 1999, 1999(1): 55-56.
[24] YOO K S, PARK C P, YOON C H, et al. Asymmetric intermolecular Heck-type reaction of acyclic alkenes via oxidative palladium (II) catalysis[J]. Organic letters, 2007, 9(20): 3933-3935.
[25] SAKAGUCHI S, YOO K S, O'NEILL J, et al. Chiral Palladium (II) Complexes Possessing a Tridentate N-Heterocyclic Carbene Amidate Alkoxide Ligand: Access to Oxygen-Bridging Dimer Structures[J]. Angewandte Chemie International Edition, 2008, 47(48): 9326-9329.
[26] CHENG XK, LI TT, LIU YT, et al. Stereo-and Enantioselective Benzylic C–H Alkenylation via Photoredox/Nickel Dual Catalysis[J]. ACS Catalysis, 2021, 11(17): 11059-11065.
[27] XU JT, LI ZL, XU YM, et al. Stereodivergent Synthesis of Both Z-and E-Alkenes by Photoinduced, Ni-Catalyzed Enantioselective C(sp3)–H Alkenylation[J]. ACS Catalysis, 2021, 11(21): 13567-13574.
[28] (a) MIYAURA N, YAMADA K, SUZUKI A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides[J]. Tetrahedron Letters, 1979, 20(36): 3437-3440. (b) MIYAURA N, SUZUKI A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst[J]. Journal of the Chemical Society, Chemical Communications, 1979 (19): 866 -867.
[29] YAMAMOTO A, NISHIMURA Y, Nishihara Y. Recent Advances in Cross-Coupling Reactions with Alkyl Halides[J]. Applied Cross-Coupling Reactions, 2013: 203-229.
[30] SCHFER P, PALACIN T, SIDERA M, et al. Author Correction: Asymmetric Suzuki Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates[J]. Nature Communications, 2018, 9(1):16216.
[31] SIDERA M, FLETCHER S P. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids[J]. Nature Chemistry, 2015, 7, 935-939.
[32] (a) CHOI J, FU G C. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry[J]. Science, 2017, 356(6334): eaaf7230. (b) FU G C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes[J]. ACS central science, 2017, 3(7): 692-700.
[33] DAI X, STRORMAN N A, Fu G C. Catalytic asymmetric Hiyama cross-couplings of racemic α-bromo esters[J]. Journal of the American Chemical Society, 2008, 130(11): 3302-3303.
[34] CHOI J, FU G C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic α-bromonitriles[J]. Journal of the American Chemical Society, 2012, 134(22): 9102 -9105.
[35] ZHOU Y, WANG L F, YUAN G C, et al. Cobalt-Bisoxazoline-Catalyzed Enantioselective Cross-Coupling of α-Bromo Esters with Alkenyl Grignard Reagents[J]. Organic Letters, 2020, 22(11): 4532-4536.
[36] LOU S, FU G C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents[J]. Journal of the American Chemical Society, 2010, 132(14): 5010-5011.
[37] CHOI J, MARTIN-GAGO P, FU G C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones[J]. Journal of the American Chemical Society, 2014, 136(34): 12161-12165.
[38] Zeng X P, Cao Z Y, Wang Y H, et al. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters[J]. Chem. Rev. 2016, 116(12): 7330–7396
[39] WANG ZB, YANG Z-P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides[J]. Nature chemistry, 2021, 13(3): 236-242.
[40] LISOVSKAYA A, KANJANA K, BARTELS D M. One-electron redox kinetics of aqueous transition metal couples Zn2+/+, Co2+/+, and Ni2+/+ using pulse radiolysis[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 19046-19058.
[41] PARTYKA D V. Transmetalation of unsaturated carbon nucleophiles from boron -containing species to the mid to late d-block metals of relevance to catalytic C−X coupling reactions (X= C, F, N, O, Pb, S, Se, Te)[J]. Chemical Reviews, 2011, 111(3): 1529-1595.
[42] GU Q-S, LI Z-L, LIU X-Y. Copper (I)-catalyzed asymmetric reactions involving radicals[J]. Accounts of Chemical Research, 2019, 53(1): 170-181.
[43] Lin J-S, Dong X-Y, Li T-T, et al. A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes[J]. Journal of the American Chemical Society, 2016, 138(30):9357-9360.
[44] CHENG Y-F, DONG X-Y, GU Q-S, et al.Achiral Pyridine Ligand-Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols[J]. Angewandte Chemie International Edition, 2017, 56(30): 8883–8886.
[45] Li X-T, Gu Q-S, Dong X-Y, et al. A Copper Catalyst with a Cinchona-AlkaloidBased Sulfonamide Ligand for Asymmetric Radical Oxytrifluoromethylation of
[45]Alkenyl Oximes[J]. Angewandte Chemie International Edition, 2018, 57(26): 7668-7672.
[46] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling[J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[47] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki–Miyaura C(sp3)–C(sp2) cross-coupling[J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[48] ZHANG Y-F, DONG X-Y, CHENG J-T, et al. Enantioconvergent Cu-Catalyzed Radical C–N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines[J]. Journal of the American Chemical Society, 2021, 143(37): 15413-15419.
[49] SU X-L, YE L, CHEN J-J, et al. Copper-Catalyzed Enantioconvergent Cross‐Coupling of Racemic Alkyl Bromides with Azole C(sp2)-H Bonds[J]. Angewandte Chemie International Edition, 2021, 60(1): 380-384.
[50] (a) PRAVEENGANESH N, d'HOND S, CHAVANT P Y. Methylpentanediolborane: Easy access to new air-and chromatography-stable, highly functionalized vinylboronates[J]. The Journal of Organic Chemistry, 2007, 72(12): 4510 -4514. (b) LIGHTFOOT A P, MAW G, THIRSK C, et al. 4,4,6-Trimethyl-2-vinyl-1,3,2-dioxaborinane: a superior 2-carbon building block for vinylboronate Heck couplings[J]. Tetrahedron letters, 2003, 44(41): 7645-7648.
[51] (a) YANG C-T, ZHANG Z-Q, LIU Y-C, et al. Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides[J]. Angewandte Chemie International Edition, 2011, 123(17): 3990-3993. (b) OHISHI T, NISHIURA M, HOU Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper (I) complexes[J]. Angewandte Chemie International Edition, 2008, 47(31): 5792-5795.

所在学位评定分委会
化学系
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336389
专题理学院_化学系
推荐引用方式
GB/T 7714
郭凯新. 铜催化的烷基卤代烃与烯基硼酸酯立体汇聚式不对称自由基交叉偶联反应[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930104-郭凯新-化学系.pdf(11153KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭凯新]的文章
百度学术
百度学术中相似的文章
[郭凯新]的文章
必应学术
必应学术中相似的文章
[郭凯新]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。