[1] For selected reviews, see: (a) NEGISHI EI, HUANG ZH, WANG GW, et al. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy[J]. Accounts of Chemiacl Research, 2008, 41(11):1474–1485. (b) RYGUS J P G, CRUDDEN C M. Enantiospecific and Iterative Suzuki-Miyaura Cross-Couplings[J]. Journal of the American Chemical Society, 2017, 139(50):18124-18137. (c) MA XH, MURRARY B, BISCOE M R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles[J]. Nature Reviews Chemistry, 2020, 4(11):584-599.
[2] For selected reviews, see: (a) HUANG LB, ARNDT M, GOOßEN K, et al. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation[J]. Chemical Reviews, 2015, 115(7) 2596–2697. (b) PIRNOT M T, WANG Y-M, BUCHWALD S L. Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes[J]. Angewant Chemie Interantional Edition, 2016, 55, 48–57.
[3] For selected reviews, see: (a) LIN J, SONG RJ, HU M, et al. Recent Advances in the Intermolecular Oxidative Difunctionalization of Alkenes[J]. The Chemical Record, 2018, 19(2-3): 440-451.(b) LAN X-W, WANG N-X, XING YL. Recent Advances in Radical Difunctionalization of Simple Alkenes[J]. European Journal of Organic Chemistry, 2017, 39, 5281-5251. (c) LI Z-L, FANG G-C, GU Q-S, et al. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes[J]. Chemical Society Reviews, 2020, 49(1): 32-48.
[4] 张永军, 王小平, 厚苏伟. 高密度聚乙烯复合材料性能改进的研究进展[J]. 塑料科技, 2021, 49(5):5.
[5] SHI M, XU Y-M. Catalytic, Asymmetric Baylis–Hillman reaction of imines with methyl vinyl ketone and methyl acrylate[J]. Angewandte Chemie International Edition, 2010, 41(23):4507-4510.
[6] QU J, HELMCHEN G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis[J]. Accounts of Chemical Research, 2017, 50(10): 2539–2555
[7] SHI M, CHEN L-H, LI C-Q. Chiral phosphine Lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with activated olefins[J]. Journal of the American Chemical Society, 2005, 127(11): 3790-3800.
[8] a) BRUICE P Y, Organic Chemistry; 6 ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, 2011. b) TROST B M, CRAWLAY M L, Asymmetric Transition-MetalCatalyzed Allylic Alkylations: Applications in Total Synthesis[J]. Chemical Reviews, 2003, 103, 2921–2944. c) Pàmies O, Margalef J, Cañellas S, et al. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications[J]. Chemical Reviews, 2021, 121, 4373–4505.
[9] YORIMITSU H, OSHIMA K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes[J]. Angewandte Chemie International Edition, 2005, 44(29): 4435-4439.
[10] Berkowitz D B, Maiti G. Following an ISES lead: the first examples of asymmetric Ni(0)-mediated allylic amination.[J]. Organic Letters, 2004, 6(16): 2661-2664.
[11] 胡跃飞,林国强等,现代有机反应:金属催化反应 II[M],化学工业出版社,2012.
[12] CHERNEY A H, REISMAN S E. Nickel-catalyzed asymmetric reductive crosscoupling between vinyl and benzyl electrophiles[J]. Journal of the American Chemical Society, 2014, 136(41): 14365-14368.
[13] HOFSTRA J L, CHERNEY A H, ORDNER C M, et al. Synthesis of enantioenriched allylic silanes via nickel-catalyzed reductive cross-coupling[J]. Journal of the American Chemical Society, 2018, 140(1): 139-142.
[14] DELANO T J, REISMAN S E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis[J]. ACS catalysis, 2019, 9(8): 6751 -6754.
[15] LI TT, CHENG XK, LU JM, et al. Enantioselective Reductive Cross-Coupling of Aryl/Alkenyl Bromides with Benzylic Chlorides via Photoredox/Biimidazoline Nickel Dual Catalysis[J]. Chinese Journal of Chemistry, 2022, 40, 1033-1038.
[16] SUZUKI N, HOFSTRA J L, POREMBA K E, et al. Nickel-catalyzed enantioselective cross-coupling of N-hydroxyphthalimide esters with vinyl bromides[J]. Organic letters, 2017, 19(8): 2150-2153.
[17] For selected reviews, see: (a) LI ZP, BOHLE D S, LI C-J. Cu-catalyzed crossdehydrogenative coupling: A versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds[J]. Proceedings of the National Academy of Sciences, 2006, 103(24): 8928-8933. (b) LI C-J. Cross-dehydrogenative coupling (CDC): exploring C− C bond formations beyond functional group transformations[J]. Accounts of chemical research, 2009, 42(2): 335-344
[18] Zhao R, Feng G, Xin X, et al. Oxidative C-H alkynylation of 3,6-dihydro-2Hpyrans[J]. Chinese Chemical Letters, 2019(7):1432-1434.
[19] For selected reviews, see: (a) WANG P, GAO XL, HUANG PF, et al. Recent Advances in Electrochemical Oxidative Cross-Coupling of Alkenes with H2 Evolution[J]. ChemCatChem, 2020, 12(1), 27-40. (b) LIU C, LIU D, LEI AW Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings[J]. Accounts of Chemical Research, 2014, 47(12):3459-3470.
[20] ZHANG G, MA YX, WANG SL, et al. Enantioselective metal/organo-catalyzed aerobic oxidative sp3 C–H olefination of tertiary amines using molecular oxygen as the sole oxidant[J]. Journal of the American Chemical Society, 2012, 134(30): 12334-12337.
[21] MA YX, ZHANG G, ZHANG JL, et al. Organocatalyzed asymmetric oxidative coupling of α-C(sp3)-H of tertiary amines to α, β-unsaturated γ-butyrolactam: Synthesis of MBH-type products[J]. Organic Letters, 2014, 16(20): 5358-5361.
[22] ICHIRO M, YUZO F. Aromatic Substitution of Olefins by Palladium Salts[J]. Synthesis, 1973(9): 524-533.
[23] MIKAMI K, HATANO M, TERADA M. Catalytic CH bond activation-asymmetric olefin coupling reaction: The first example of asymmetric Fujiwara -Moritani reaction catalyzed by chiral palladium (II) complexes[J]. Chemistry letters, 1999, 1999(1): 55-56.
[24] YOO K S, PARK C P, YOON C H, et al. Asymmetric intermolecular Heck-type reaction of acyclic alkenes via oxidative palladium (II) catalysis[J]. Organic letters, 2007, 9(20): 3933-3935.
[25] SAKAGUCHI S, YOO K S, O'NEILL J, et al. Chiral Palladium (II) Complexes Possessing a Tridentate N-Heterocyclic Carbene Amidate Alkoxide Ligand: Access to Oxygen-Bridging Dimer Structures[J]. Angewandte Chemie International Edition, 2008, 47(48): 9326-9329.
[26] CHENG XK, LI TT, LIU YT, et al. Stereo-and Enantioselective Benzylic C–H Alkenylation via Photoredox/Nickel Dual Catalysis[J]. ACS Catalysis, 2021, 11(17): 11059-11065.
[27] XU JT, LI ZL, XU YM, et al. Stereodivergent Synthesis of Both Z-and E-Alkenes by Photoinduced, Ni-Catalyzed Enantioselective C(sp3)–H Alkenylation[J]. ACS Catalysis, 2021, 11(21): 13567-13574.
[28] (a) MIYAURA N, YAMADA K, SUZUKI A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides[J]. Tetrahedron Letters, 1979, 20(36): 3437-3440. (b) MIYAURA N, SUZUKI A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst[J]. Journal of the Chemical Society, Chemical Communications, 1979 (19): 866 -867.
[29] YAMAMOTO A, NISHIMURA Y, Nishihara Y. Recent Advances in Cross-Coupling Reactions with Alkyl Halides[J]. Applied Cross-Coupling Reactions, 2013: 203-229.
[30] SCHFER P, PALACIN T, SIDERA M, et al. Author Correction: Asymmetric Suzuki Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates[J]. Nature Communications, 2018, 9(1):16216.
[31] SIDERA M, FLETCHER S P. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids[J]. Nature Chemistry, 2015, 7, 935-939.
[32] (a) CHOI J, FU G C. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry[J]. Science, 2017, 356(6334): eaaf7230. (b) FU G C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes[J]. ACS central science, 2017, 3(7): 692-700.
[33] DAI X, STRORMAN N A, Fu G C. Catalytic asymmetric Hiyama cross-couplings of racemic α-bromo esters[J]. Journal of the American Chemical Society, 2008, 130(11): 3302-3303.
[34] CHOI J, FU G C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic α-bromonitriles[J]. Journal of the American Chemical Society, 2012, 134(22): 9102 -9105.
[35] ZHOU Y, WANG L F, YUAN G C, et al. Cobalt-Bisoxazoline-Catalyzed Enantioselective Cross-Coupling of α-Bromo Esters with Alkenyl Grignard Reagents[J]. Organic Letters, 2020, 22(11): 4532-4536.
[36] LOU S, FU G C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents[J]. Journal of the American Chemical Society, 2010, 132(14): 5010-5011.
[37] CHOI J, MARTIN-GAGO P, FU G C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones[J]. Journal of the American Chemical Society, 2014, 136(34): 12161-12165.
[38] Zeng X P, Cao Z Y, Wang Y H, et al. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters[J]. Chem. Rev. 2016, 116(12): 7330–7396
[39] WANG ZB, YANG Z-P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides[J]. Nature chemistry, 2021, 13(3): 236-242.
[40] LISOVSKAYA A, KANJANA K, BARTELS D M. One-electron redox kinetics of aqueous transition metal couples Zn2+/+, Co2+/+, and Ni2+/+ using pulse radiolysis[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 19046-19058.
[41] PARTYKA D V. Transmetalation of unsaturated carbon nucleophiles from boron -containing species to the mid to late d-block metals of relevance to catalytic C−X coupling reactions (X= C, F, N, O, Pb, S, Se, Te)[J]. Chemical Reviews, 2011, 111(3): 1529-1595.
[42] GU Q-S, LI Z-L, LIU X-Y. Copper (I)-catalyzed asymmetric reactions involving radicals[J]. Accounts of Chemical Research, 2019, 53(1): 170-181.
[43] Lin J-S, Dong X-Y, Li T-T, et al. A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes[J]. Journal of the American Chemical Society, 2016, 138(30):9357-9360.
[44] CHENG Y-F, DONG X-Y, GU Q-S, et al.Achiral Pyridine Ligand-Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols[J]. Angewandte Chemie International Edition, 2017, 56(30): 8883–8886.
[45] Li X-T, Gu Q-S, Dong X-Y, et al. A Copper Catalyst with a Cinchona-AlkaloidBased Sulfonamide Ligand for Asymmetric Radical Oxytrifluoromethylation of
[45]Alkenyl Oximes[J]. Angewandte Chemie International Edition, 2018, 57(26): 7668-7672.
[46] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling[J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[47] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki–Miyaura C(sp3)–C(sp2) cross-coupling[J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[48] ZHANG Y-F, DONG X-Y, CHENG J-T, et al. Enantioconvergent Cu-Catalyzed Radical C–N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines[J]. Journal of the American Chemical Society, 2021, 143(37): 15413-15419.
[49] SU X-L, YE L, CHEN J-J, et al. Copper-Catalyzed Enantioconvergent Cross‐Coupling of Racemic Alkyl Bromides with Azole C(sp2)-H Bonds[J]. Angewandte Chemie International Edition, 2021, 60(1): 380-384.
[50] (a) PRAVEENGANESH N, d'HOND S, CHAVANT P Y. Methylpentanediolborane: Easy access to new air-and chromatography-stable, highly functionalized vinylboronates[J]. The Journal of Organic Chemistry, 2007, 72(12): 4510 -4514. (b) LIGHTFOOT A P, MAW G, THIRSK C, et al. 4,4,6-Trimethyl-2-vinyl-1,3,2-dioxaborinane: a superior 2-carbon building block for vinylboronate Heck couplings[J]. Tetrahedron letters, 2003, 44(41): 7645-7648.
[51] (a) YANG C-T, ZHANG Z-Q, LIU Y-C, et al. Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides[J]. Angewandte Chemie International Edition, 2011, 123(17): 3990-3993. (b) OHISHI T, NISHIURA M, HOU Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper (I) complexes[J]. Angewandte Chemie International Edition, 2008, 47(31): 5792-5795.
修改评论