[1] CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20): 4091.
[2] BALL P. Semiconductor technology looks up[J]. Nature Materials, 2022, 21(2): 132-132.
[3] 台湾积体电路制造股份有限公司. 专业集成电路制造服务[EB/OL]. 2022
[2022-04-07]. https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.
[4] ANTHONY S. Beyond Silicon: IBM Unveils World’s First 7nm Chip[J]. Ars Technica, 2015, 9.
[5] FEYNMAN R P. Simulating Physics with Computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7).
[6] SANDERS B C. Quantum Leap for Quantum Primacy[J]. Physics, 2021, 14: 147.
[7] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super- conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[8] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-1463.
[9] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996: 212-219.
[10] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[11] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[12] BARENCO A, BENNETT C H, CLEVE R, et al. Elementary gates for quantum computation [J]. Physical Review A, 1995, 52(5): 3457.
[13] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[14] DIVINCENZO D P. Quantum gates and circuits[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1969): 261-276.
[15] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[16] VELDHORST M, EENINK H, YANG C H, et al. Silicon CMOS architecture for a spin-based quantum computer[J]. Nature Communications, 2017, 8(1): 1-8.
[17] CAMENZIND L C, GEYER S, FUHRER A, et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin[J]. Nature Electronics, 2022, 5(3): 178-183.
[18] ZWERVER A, KRÄHENMANN T, WATSON T, et al. Qubits made by advanced semiconductor manufacturing[J]. Nature Electronics, 2022, 5(3): 184-190.
[19] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical Review A, 1998, 57(1): 120.
[20] KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[21] ELZERMAN J, HANSON R, WILLEMS VAN BEVEREN L, et al. Semiconductor few- electron quantum dots as spin qubits[M]//Quantum Computing in Solid State Systems. Springer, 2006: 298-305.
[22] HANSON R, KOUWENHOVEN L P, PETTA J R, et al. Spins in few-electron quantum dots [J]. Reviews of Modern Physics, 2007, 79(4): 1217.
[23] NOWACK K C, KOPPENS F, NAZAROV Y V, et al. Coherent control of a single electron spin with electric fields[J]. Science, 2007, 318(5855): 1430-1433.
[24] CAO G, LI H O, TU T, et al. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference[J]. Nature Communications, 2013, 4(1): 1-7.
[25] KIM J S, TYRYSHKIN A M, LYON S A. Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors[J]. Applied Physics Letters, 2017, 110(12): 123505.
[26] WANG K, LI H O, LUO G, et al. Improving mobility of silicon metal-oxide–semiconductor devices for quantum dots by high vacuum activation annealing[J]. Europhysics Letters, 2020, 130(2): 27001.
[27] ZWANENBURG F A, DZURAK A S, MORELLO A, et al. Silicon quantum electronics[J]. Reviews of Modern Physics, 2013, 85(3): 961.
[28] WITZEL W M, CARROLL M S, MORELLO A, et al. Electron spin decoherence in isotope- enriched silicon[J]. Physical Review Letters, 2010, 105(18): 187602.
[29] TYRYSHKIN A M, TOJO S, MORTON J J, et al. Electron spin coherence exceeding seconds in high-purity silicon[J]. Nature Materials, 2012, 11(2): 143-147.
[30] KASTNER M A. The single-electron transistor[J]. Reviews of Modern Physics, 1992, 64(3): 849.
[31] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven CNOT gate for electron spins [J]. Science, 2018, 359(6374): 439-442.
[32] KOPPENS F H, BUIZERT C, TIELROOIJ K J, et al. Driven coherent oscillations of a single electron spin in a quantum dot[J]. Nature, 2006, 442(7104): 766-771.
[33] WATSON T F, WEBER B, HSUEH Y L, et al. Atomically engineered electron spin lifetimes of 30 s in silicon[J]. Science Advances, 2017, 3(3): e1602811.
[34] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489(7417): 541-545.
[35] HE Y, GORMAN S, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371-375.
[36] KRANZ L, GORMAN S K, THORGRIMSSON B, et al. Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon[J]. Advanced Materials, 2020, 32(40): 2003361.
[37] TAKEDA K, NOIRI A, NAKAJIMA T, et al. Quantum tomography of an entangled three-qubit state in silicon[J]. Nature Nanotechnology, 2021, 16(9): 965-969.
[38] HENDRICKX N W, LAWRIE W I, RUSS M, et al. A four-qubit germanium quantum processor [J]. Nature, 2021, 591(7851): 580-585.
[39] PHILIPS S G, MĄDZIK M T, AMITONOV S V, et al. Universal control of a six-qubit quantum processor in silicon[EB/OL]. 2022. https://arxiv.com/abs/2202.09252.
[40] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343-347.
[41] NOIRI A, TAKEDA K, NAKAJIMA T, et al. Fast universal quantum gate above the fault- tolerance threshold in silicon[J]. Nature, 2022, 601(7893): 338-342.
[42] FUECHSLE M, MIWA J A, MAHAPATRA S, et al. A single-atom transistor[J]. Nature Nanotechnology, 2012, 7(4): 242-246.
[43] MĄDZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit donor quantum processor in silicon[J]. Nature, 2022, 601(7893): 348-353.
[44] BURKARD G, LADD T D, NICHOL J M, et al. Semiconductor Spin Qubits[EB/OL]. 2021. https://arxiv.com/abs/2112.08863.
[45] ELZERMAN J, HANSON R, WILLEMS VAN BEVEREN L, et al. Single-shot read-out of an individual electron spin in a quantum dot[J]. Nature, 2004, 430(6998): 431-435.
[46] REILLY D, MARCUS C, HANSON M, et al. Fast single-charge sensing with a rf quantum point contact[J]. Applied Physics Letters, 2007, 91(16): 162101.
[47] GOLOVACH V N, BORHANI M, LOSS D. Electric-dipole-induced spin resonance in quantum dots[J]. Physical Review B, 2006, 74(16): 165319.
[48] LEVY J. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange[J]. Physical Review Letters, 2002, 89(14): 147902.
[49] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184.
[50] BLUHM H, FOLETTI S, NEDER I, et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 𝜇s[J]. Nature Physics, 2011, 7(2): 109-113.
[51] MAUNE B M, BORSELLI M G, HUANG B, et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot[J]. Nature, 2012, 481(7381): 344-347.
[52] NICHOL J M, ORONA L A, HARVEY S P, et al. High-fidelity entangling gate for double- quantum-dot spin qubits[J]. NPJ Quantum Information, 2017, 3(1): 1-5.
[53] BØTTCHER C, HARVEY S, FALLAHI S, et al. Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit[EB/OL]. 2021. https://arxiv.com/abs/2107.10269.
[54] DIVINCENZO D P, BACON D, KEMPE J, et al. Universal quantum computation with the exchange interaction[J]. Nature, 2000, 408(6810): 339-342.
[55] MEDFORD J, BEIL J, TAYLOR J, et al. Self-consistent measurement and state tomography of an exchange-only spin qubit[J]. Nature Nanotechnology, 2013, 8(9): 654-659.
[56] ENG K, LADD T D, SMITH A, et al. Isotopically enhanced triple-quantum-dot qubit[J]. Sci- ence Advances, 2015, 1(4): e1500214.
[57] TAYLOR J M, SRINIVASA V, MEDFORD J. Electrically protected resonant exchange qubits in triple quantum dots[J]. Physical Review Letters, 2013, 111(5): 050502.
[58] RUSS M, BURKARD G. Asymmetric resonant exchange qubit under the influence of electrical noise[J]. Physical Review B, 2015, 91(23): 235411.
[59] SHIM Y P, TAHAN C. Charge-noise-insensitive gate operations for always-on, exchange-only qubits[J]. Physical Review B, 2016, 93(12): 121410.
[60] PAKKIAM P, TIMOFEEV A, HOUSE M, et al. Single-shot single-gate rf spin readout in silicon [J]. Physical Review X, 2018, 8(4): 041032.
[61] MUHONEN J T, DEHOLLAIN J P, LAUCHT A, et al. Storing quantum information for 30 seconds in a nanoelectronic device[J]. Nature Nanotechnology, 2014, 9(12): 986-991.
[62] KOILLER B, HU X, SARMA S D. Exchange in silicon-based quantum computer architecture [J]. Physical Review Letters, 2001, 88(2): 027903.
[63] MORELLO A, PLA J J, ZWANENBURG F A, et al. Single-shot readout of an electron spin in silicon[J]. Nature, 2010, 467(7316): 687-691.
[64] WEBER B, MAHAPATRA S, RYU H, et al. Ohm’s law survives to the atomic scale[J]. Science, 2012, 335(6064): 64-67.
[65] PLA J J, TAN K Y, DEHOLLAIN J P, et al. High-fidelity readout and control of a nuclear spin qubit in silicon[J]. Nature, 2013, 496(7445): 334-338.
[66] MUHONEN J, LAUCHT A, SIMMONS S, et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking[J]. Journal of Physics: Condensed Matter, 2015, 27(15): 154205.
[67] NADJ-PERGE S, FROLOV S, BAKKERS E, et al. Spin–orbit qubit in a semiconductor nanowire[J]. Nature, 2010, 468(7327): 1084-1087.
[68] PIORO-LADRIERE M, TOKURA Y, OBATA T, et al. Micromagnets for coherent control of spin-charge qubit in lateral quantum dots[J]. Applied Physics Letters, 2007, 90(2): 024105.
[69] TOKURA Y, VAN DER WIEL W G, OBATA T, et al. Coherent single electron spin control in a slanting Zeeman field[J]. Physical Review Letters, 2006, 96(4): 047202.
[70] YONEDA J, TAKEDA K, OTSUKA T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%[J]. Nature Nanotechnology, 2018, 13(2): 102- 106.
[71] BENITO M, CROOT X, ADELSBERGER C, et al. Electric-field control and noise protection of the flopping-mode spin qubit[J]. Physical Review B, 2019, 100(12): 125430.
[72] CROOT X, MI X, PUTZ S, et al. Flopping-mode electric dipole spin resonance[J]. Physical Review Research, 2020, 2(1): 012006.
[73] MILLS A, GUINN C, GULLANS M, et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%[J/OL]. Science Advances, 2022, 8(14): eabn5130. https://www.scienc e.org/doi/abs/10.1126/sciadv.abn5130.
[74] TOSI G, MOHIYADDIN F A, SCHMITT V, et al. Silicon quantum processor with robust long- distance qubit couplings[J]. Nature Communications, 2017, 8(1): 1-11.
[75] KRAUTH F, GORMAN S, HE Y, et al. Flopping-mode electric dipole spin resonance in phosphorus donor qubits in silicon[EB/OL]. 2021. https://arxiv.com/abs/2105.02906.
[76] ASAAD S, MOURIK V, JOECKER B, et al. Coherent electrical control of a single high-spin nucleus in silicon[J]. Nature, 2020, 579(7798): 205-209.
[77] RUSS M, BURKARD G. Three-electron spin qubits[J]. Journal of Physics: Condensed Matter, 2017, 29(39): 393001.
[78] SALFI J, MOL J A, CULCER D, et al. Charge-insensitive single-atom spin-orbit qubit in silicon [J]. Physical Review Letters, 2016, 116(24): 246801.
[79] TOSI G, MOHIYADDIN F A, TENBERG S, et al. Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon[J]. Physical Review B, 2018, 98(7): 075313.
[80] WINKLER R. Spin-orbit coupling effects in two-dimensional electron and hole systems: volume 191[M]. Springer, 2003.
[81] ITOH K M, WATANABE H. Isotope engineering of silicon and diamond for quantum computing and sensing applications[J]. MRS Communications, 2014, 4(4): 143-157.
[82] RAHMAN R, PARK S H, BOYKIN T B, et al. Gate-induced g-factor control and dimensional transition for donors in multivalley semiconductors[J]. Physical Review B, 2009, 80(15): 155301.
[83] SAVYTSKYY R, BOTZEM T, DE FUENTES I F, et al. An electrically-driven single-atom flip- flop’qubit[EB/OL]. 2022. https://arxiv.com/abs/2202.04438.
[84] HILL C D, PERETZ E, HILE S J, et al. A surface code quantum computer in silicon[J]. Science Advances, 2015, 1(9): e1500707.
[85] O’GORMAN J, NICKERSON N H, ROSS P, et al. A silicon-based surface code quantum computer[J]. NPJ Quantum Information, 2016, 2(1): 1-14.
[86] KOBAYASHI T, SALFI J, CHUA C, et al. Engineering long spin coherence times of spin–orbit qubits in silicon[J]. Nature Materials, 2021, 20(1): 38-42.
[87] SCAPPUCCI G, KLOEFFEL C, ZWANENBURG F A, et al. The germanium quantum information route[J]. Nature Reviews Materials, 2021, 6(10): 926-943.
[88] SALFI J, MOL J A, CULCER D, et al. Charge-insensitive single-atom spin-orbit qubit in silicon [J]. Physical Review Letters, 2016, 116(24): 246801.
修改评论