中文版 | English
题名

过剩电子对乙二醇在 R-TiO2(110)表面光化学断键选择性的影响

其他题名
The Effect of Excess Electrons on the Selectivity of Photochemical Reactions of Ethylene Glycol on a Rutile TiO2(110) Surface
姓名
姓名拼音
LI Yinuo
学号
11930494
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
杨学明
导师单位
理学院
论文答辩日期
2022-05-13
论文提交日期
2022-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

程序升温脱附谱( Temperature-Programmed Desorption, TPD),是一种研究表面化学反应的强有力工具。论文作者使用自行搭建的基于超高灵敏质谱的 TPD 装置,深入探究了乙二醇( EG)在金红石( R) TiO2(110) 表面的光化学反应,并分析了过剩电子对光催化反应断键选择性( C-O vs C-C)的影响。
过剩电子在基于过渡金属氧化物的表面催化反应中扮演了至关重要的作用,然而关于过剩电子在光催化反应断键选择性中所起到的作用的相关研究却鲜有报道。以乙二醇 / 金红石 TiO2(110) 体系为研究对象,论文作者比较了乙二醇在还原性和氧化性的金红石 TiO2(110) 表面上的光化学反应。 在还原性金红石TiO2(110) 表面上,当紫外光照时,乙二醇分子更倾向于通过C-O 键的断裂生成乙醛( CH3CHOTi),而不是通过 C-C 键的断裂生成甲醛( CH2OTi);而在氧化性 R-TiO2(110) 表面上,随着表面预吸附 O2 量的增加,更多的乙二醇分子通过 C-C 键的断裂生成了甲醛;与此同时,通过 C-O 键断裂生成的CH3CHOTi 则基本不变。进一步分析表明,过剩电子很可能是造成乙二醇光催化选择性断键发生显著变化的关键原因。乙二醇光解离生成CH2OTi 属于半反应,会在表面留下过剩电子,因此,在还原性表面上,过剩电子的累积抑制 CH2OTi 的生成。预先吸附 O2 降低了表面过剩电子浓度,因而会促进 CH2OTi 的生成。这项工作有助于加深我们对过剩电子在 TiO2 光催化中所扮演作用的理解。未来,我们有望通过调控TiO2 及其他光催化剂上表面过剩电子的浓度,实现对表面光催化反应断键选择性的调节。
 

其他摘要

Temperature-Programmed Desorption (TPD) is a powerful tool for studying surface chemical reactions. Using a home-built TPD apparatus based on ultrahighly sensitive mass spectrometry detection system, the author has systematically explored the photochemical reaction of ethylene glycol (EG) on R-TiO2(110), and elucidated the influence of excess electrons on the selectivity of bond cleavage (C-O vs C-C) in the photocatalytic reaction.
Excess electrons play an important role in the surface catalytic reactions on various transition metal oxides. However, few studies have been performed on the role of excess electrons in the selectivity of bond cleavage in photocatalytic reactions. Taking EG / rutile TiO2(110) as a model system, the author studied the photochemical reactions of EG on reduced and oxidized rutile(R-) TiO2(110) surfaces. On the reduced R-TiO2(110) surface, when irradiated by UV light, EG molecules prefer to form acetaldehyde (CH3CHOTi) through the cleavage of the C-O bond at high EG coverage. With the increasing pre-adsorbed O2 on the surface, the C-C bond cleavage of EG into CH2OTi is largely enhanced and becomes dominant. Conversely, the yield of CH3CHOTi through the cleavage of the C-O bond remains nearly unchanged. Further analysis showed that the significant changes in the selectivity of bond cleavage in EG photocatalysis are most likely due to the excess electrons contributed by Ov and Tiint. The formation of CH2OTi from EG photolysis on R-TiO2(110) is a hole-mediated half-reaction, leaving excess electrons on the R-TiO2(110) surface. Therefore, on the reduced surface, the accumulation of excess electrons will inhibit the formation of CH2OTi. Pre-adsorption of O2 can decrease excess electron concentration, thus promoting the formation of CH2OTi. In the future, we may tune the photocatalytic selectivity by regulating the concentrations of excess electrons on R-TiO2 and other photocatalysts.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] FUJISHIMA A, HONDA K. Electrochemical Photolysis of Water at a SemiconductorElectrode[J]. Nature, 1972, 238(5358): 37-38.
[2] MA Y, WANG X, JIA Y, et al. Titanium Dioxide-Based Nanomaterials Photocatalytic Fuel Generations[J]. Chemical Reviews, 2014, 114(19): 9987 -10043.
[3] RAO H, SCHMIDT L C, BONIN J, et al. Visible-Light-Driven Methane Formation from CO2 With a Molecular Iron Catalyst[J]. Nature, 2017, 548(7665): 74-77.
[4] KANG I-C, ZHANG Q, YIN S, et al. Improvement in Photocatalytic Activity of TiO2 Under Visible Irradiation Through Addition of N-TiO2[J]. Environmental Science & Technology, 2008, 42(10): 3622-3626.
[5] THOMPSON T L, YATES J T. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes[J]. Chemical Reviews, 2006, 106(10): 4428 -4453.
[6] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69 -96.
[7] NISAR J, TOPALIAN Z, DE SARKAR A, et al. TiO2-Based Gas Sensor: A Possible Application to SO2[J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8516-8522.
[8] FU G, VARY P S, LIN C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8889-8898.
[9] CHEN X, MAO S S. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews, 2007, 107(7): 2891 -2959.
[10] HENDERSON M A. A Surface Science Perspective on TiO2 Photocatalysis[J]. Sur ace Science Reports, 2011, 66(6-7): 185-297.
[11] YUEKUN L, LUNING W, DAWEI L, et al. TiO2-Based Nanomaterials: Design, Synthesis, and Applications[J]. Journal of Nanomaterials, 2015.
[12] CHEN M, GOODMAN D W. Catalytically Active Gold on Ordered Titania Suppor s[J]. Chemical Society Reviews, 2008, 37(9): 1860-1870.
[13] LAZZERI M, VITTADINI A, SELLONI A. Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces[J]. Physical Review B, 2002, 63(15): 155409.
[14] THOMAS A G, SYRES K L. Adsorption of Organic Molecules on Rutile TiO2 and Anatase TiO2 Single Crystal Surfaces[J]. Chemical Society Reviews, 2012, 41(11): 4207-4217.
[15] FUJISHIMA A, RAO T N, TRYK D A. Titanium Dioxide Photocatalysis[J]. Journal of Photochemistry and Photobiology C, 2000, 1(1): 1-21.
[16] GUO Q, ZHOU C, MA Z, et al. Elementary Photocatalytic Chemistry on TiO2 Surfaces[J]. Chemical Society Reviews, 2016, 45(13): 3701-3730.
[17] HENDERSON M A, LYUBINETSKY I. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)[J]. Chemical Reviews, 2013, 113(6): 4428-4455.
[18] LINSEBIGLER A L, LU G, YATES J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95(3): 735 -758.
[19] NI M, LEUNG M K, LEUNG D Y, et al. A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425.
[20] ZHOU C Y, REN Z F, TAN S J, et al. Site-specific Photocatalytic Splitting of Meth nol on TiO2(110)[J]. Chemical Science, 2010, 1(5): 575-580.
[21] GUO Q, XU C, REN Z, et al. Stepwise Photocatalytic Dissociation of Methanol a d Water on TiO2(110)[J]. Journal of The American Society, 2012, 134(32): 13366-13373.
[22] HANSEN J Ø, BEBENSEE R, MARTINEZ U, et al. Unravelling Site-Specific PhotoR actions of Ethanol on Rutile TiO2(110)[J]. Scientific Reports, 2016, 6(1): 21990.
[23] XU C, YANG W, GUO Q, et al. Photoinduced Decomposition of Formaldeh yde on a TiO2(110) Surface, Assisted by Bridge-Bonded Oxygen Atoms[J]. The Journal of Physical Chemistry Letters, 2013, 4(16): 2668-2673.
[24] XU C, YANG W, GUO Q, et al. Photoinduced Decomposition of Acetaldehyde on a Reduced TiO2(110) Surface: Involvement of Lattice Oxygen[J]. Physical ChemistryChemical Physics, 2016, 18(45): 30982-30989.
[25] FARFAN-ARRIBAS E, MADIX R J. Role of Defects in the Adsorption of AliphaticAlcohols on the TiO2(110) Surface[J]. Journal of Physical Chemistry B, 2002, 106(41):10680-10692.
[26] WENDT S, SPRUNGER P T, LIRA E, et al. The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania[J]. Science, 2008, 320(27): 1755 -1759.
[27] DIEBOLD U. The Surface Science of Titanium Dioxide[J]. Surface Science Reports, 2003, 48(5): 53-229.
[28] SEE A K, BARTYNSKI R. Inverse Photoemission Study of the Defective TiO 2(110) Surface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 2591-2596.
[29] GANDUGLIA-PIROVANO M V, HOFMANN A, SAUER J. Oxygen Vacancies in Transition Metal and Rare Earth Oxides: Current State of Understanding and Remaining Challenges[J]. Surface Science Reports, 2007, 62(6): 219-270.
[30] WENDT S, BECHSTEIN R, PORSGAARD S, et al. Comment on "Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2(110)"[J]. Physical Review Letters, 2010,104(25): 036806.
[31] MINATO T, SAINOO Y, KIM Y, et al. The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl Impurity Defects on Titanium Dioxide (110) Surfa ce[J]. Journal of Chemical Physics, 2009, 130(12): 1755.
[32] HENDERSON M A, EPLING W, PEDEN C, et al. Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110)[J]. Journal of Physical Chemistry B, 2003, 107(2): 534-545.
[33] TILOCCA A, DI VALENTIN C, SELLONI A. O2 Interaction and Reactivity on aModel Hydroxylated Rutile(110) Surface[J]. Journal of Physical Chemistry B, 2005,109(44): 20963-20967.
[34] DU Y, DESKINS N A, ZHANG Z, et al. Imaging Consecutive Steps of O2 Reactionwith Hydroxylated TiO2(110): Identification of HO2 and Terminal OH Intermediates[J]. Journal of Physical Chemistry C, 2009, 113(2): 666-671.
[35] MATTHIESEN J, WENDT S, HANSEN J Ø, et al. Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning TunnelingMicroscopy[J]. ACS Nano, 2009, 3(3): 517-526.
[36] TIAN H, XU B, FAN J, et al. Intrinsic Role of Excess Electrons in Surface Reactionson Rutile TiO2(110): Using Water and Oxygen as Probes[J]. The Journal of PhysicalChemistry C, 2018, 122(15): 8270-8276.
[37] WANG Z T, DESKINS A, HENDERSON M A, et al. Inhibitive Influence of OxygenVacancies for Photoactivity on TiO2(110)[J]. Physical Review Letters, 2012, 109(26):266103.
[38] WANG Z T, HENDERSON M A, LYUBINETSKY I. Origin of Coverage Dependencein Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged CoadsorbedHydroxyls[J]. ACS Catalysis, 2015, 5(11): 6463-6467.
[39] JIN X, LI C, XU C, et al. Photocatalytic C-C Bond Cleavage in Ethylene Glycol onTiO2: A Molecular Level Picture and the Effect of Metal Nanoparticles[J]. Journal ofCatalysis, 2017, 354: 37-45.
[40] FEI XU, XIAO CHEN, WENSHAO YANG, et al. Coverage Dependent EthyleneGlycol Photochemistry on Rutile-TiO2(110)[J]. Journal of Physical Chemistry C, 2020,124(27): 14632-14639.
[41] REDHEAD P A. Thermal Desorption of Gases[J]. Vacuum, 1962, 12(4): 203 -211.
[42] HENDERSON M A. An HREELS and TPD study of Water on TiO2(110): the Extent of Molecular Versus Dissociative Adsorption[J]. Surface Science, 1996, 355(1 -3): 151-166.
[43] HENDERSON M A, OTERO-TAPIA S, E. CASTRO M. The Chemistry of Methanolon the TiO2(110) Surface: The Influence of Vacancies and Coadsorbed Species[J].Faraday Discussions, 1999, 114(0): 313-329.
[44] SMITH A W, ARANOFF S. Thermodesorption of Gases from Solids[J]. The Journalof Physical Chemistry, 1958, 62(6): 684-686.
[45] FEDCHAK J A, DEFIBAUGH D R. Accurate Conductance Measurements of a Pinhole Orifice Using a Constant-Pressure Flowmeter[J]. Measurement, 2012, 45(10): 2449-2451.
[46] JR R D, HUFFSTETLER. Resistively Heated Molecular Beam Doser for WaterDeposition in Ultrahigh Vacuum[J]. Journal of Vacuun Science &Technology A, 2001,19(3): 1030-1031.
[47] HAGANS P L, DEKOVEN B M. A Laser Drilled Aperture for Use in an UltrahighVacuum Gas Doser[J]. Journal of Vacuun Science &Technology A, 1989, 7(6): 3375 -3377.
[48] GREENWOOD N N, EARNSHAW A. Chemistry of the Elements[M]. Elsevier, 2012.
[49] HENRICH V E, COX P A. The Surface Science of Metal Oxides[M]. CambridgeUniversity Press, 1996.
[50] KURTZ R L, STOCK-BAUER R, MSDEY T E. Synchrotron Radiation Studies of H2OAdsorption on TiO2(110)[J]. Surface Science Reports, 1989, 218(1): 178-200.
[51] HENDERSON M A. Evidence for Bicarbonate Formation on Vacuum AnnealedTiO2(110) Resulting From a Precursor-Mediated Interaction Between CO2 and H2O[J]. Surface Science, 1998, 400(1–3): 203-219.
[52] THOMPSON T L, YATES J T. TiO2-based Photocatalysis: Surface Defects, Oxygenand Charge Transfer[J]. Topics in Catalysis, 2005, 35(3): 197-210.
[53] DIEBOLD U, ANDERSON J F, NG K-O, et al. Evidence for the Tunneling Site onTransition-Metal Oxides: TiO2(110)[J]. Physical Review Letters, 1996, 77(7): 1322.
[54] CHEN X, SHEN S, GUO L, et al. Semiconductor-based Photocatalytic HydrogenGeneration[J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[55] KITANO M, MATSUOKA M, UESHIMA M, et al. Recent Developments in TitaniumOxide-Based Photocatalysts[J]. Applied Catalysis A: General, 2007, 325(1): 1-14.
[56] LEUNG D Y, FU X, WANG C, et al. Hydrogen Production Over Titania-BasedPhotocatalysts[J]. Chemistry and Sustainable Chemistry, 2010, 3(6): 681-694.
[57] LIU G, WANG L, YANG H G, et al. Titania-Based Photocatalysts—Crystal Growth,Doping and Heterostructuring[J]. Journal of Materials Chemistry, 2010, 20(5): 831 -843.
[58] FUJISHIMA A, ZHANG X, TRYK D A. TiO2 Photocatalysis and Related SurfacePhenomena[J]. Surface Science Reports, 2008, 63(12): 515-582.
[59] MILLS A, DAVIES R H, WORSLEY D. Water Purification by SemiconductorPhotocatalysis[J]. Chemical Society Reviews, 1993, 22(6): 417-425.
[60] DESKINS N A, ROUSSEAU R, DUPUIS M. Defining the Role of Excess Electrons inthe Surface Chemistry of TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(13):5891-5897.
[61] FARFAN-ARRIBAS E, MADIX R J. Role of Defects in the Adsorption of AliphaticAlcohols on the TiO2(110) Surface[J]. Journal of Physical Chemistry B, 2002, 106(41):10680-10692.
[62] ZHENJUN L, BRUCE D K, ZDENEK D L. Dehydration and Dehydrogenation ofEthylene Glycol on Rutile TiO2(110)[J]. Physical Chemistry Chemical Physics, 2013,15: 12180-12186.
[63] LONG C, ZHENJUN L, SCOTT S R, et al. Molecular Hydrogen Formation fromProximal Glycol Pairs on TiO2(110)[J]. Journal of the American Chemical Society,2014, 136(15): 5559-5562.
[64] DANDA P A, YOON Y, ZHENJUN L, et al. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)[J]. ACS Nano, 2013, 7(11): 10414-10423.
[65] LI Z, SMITH R S, KAY B D, et al. Determination of Absolute Coverages for SmallAliphatic Alcohols on TiO2(110)[J]. Journal of Physical Chemistry C, 2011, 115(45):22534-22539.
[66] YATES J T, RUBIN L G. Experimental Innovations in Surface Science: A Guide toPractical Laboratory Methods and Instruments[J]. Physics Today, 1998, 51(8): 66.
[67] FENG H, TAN S, TANG H, et al. Temperature- and Coverage-Dependent Kinetics of Photocatalytic Reaction of Methanol on TiO2(110)-(1×1) Surface[J]. The Journal ofPhysical Chemistry C, 2016, 120(10): 5503-5514.
[68] SHEN M, HENDERSON M A. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2[J]. The Journal of PhysicalChemistry Letters, 2011, 2(21): 2707-2710.
[69] NADEEM A, MUIR J, CONNELLY K, et al. Ethanol Photo-Oxidation on a RutileTiO2(110) Single Crystal Surface[J]. Physical Chemistry Chemical Physics, 2011,13(17): 7637-7643.
[70] HENDERSON M A, SZANYI J, PEDEN C H. Conversion of N2O to N2 on TiO2(110)[J]. Catalysis Today, 2003, 85(2-4): 251-266.
[71] LISACHENKO A A, MIKHAILOV R V, BASOV L L, et al. Photocatalytic Reductionof NO by CO on Titanium Dioxide Under Visible Light Irradiation[J]. The Journal ofPhysical Chemistry C, 2007, 111(39): 14440-14447.
[72] LIRA E, HANSEN J Ø, HUO P, et al. Dissociative and Molecular Oxygen Chemisorption Channels on Reduced Rutile TiO2(110): An STM and TPD study[J]. Surface Science, 2010, 604(21-22): 1945-1960.
[73] ZHANG Z, YATES J T. Effect of Adsorbed Donor and Acceptor Molecules on Electron Stimulated Desorption: O2/TiO2(110)[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2185-2188.
[74] LONG C, ZHENJUN L, SCOTT S R, et al. Molecular Hydrogen Formation Proximal Glycol Pairs on TiO2(110)[J]. Journal of the American Chemical Society, 2014, 136(15): 5559-5562.

所在学位评定分委会
化学系
国内图书分类号
O643.32
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336393
专题理学院_化学系
推荐引用方式
GB/T 7714
李依诺. 过剩电子对乙二醇在 R-TiO2(110)表面光化学断键选择性的影响[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930494-李依诺-化学系.pdf(4376KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李依诺]的文章
百度学术
百度学术中相似的文章
[李依诺]的文章
必应学术
必应学术中相似的文章
[李依诺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。