[1] FUJISHIMA A, HONDA K. Electrochemical Photolysis of Water at a SemiconductorElectrode[J]. Nature, 1972, 238(5358): 37-38.
[2] MA Y, WANG X, JIA Y, et al. Titanium Dioxide-Based Nanomaterials Photocatalytic Fuel Generations[J]. Chemical Reviews, 2014, 114(19): 9987 -10043.
[3] RAO H, SCHMIDT L C, BONIN J, et al. Visible-Light-Driven Methane Formation from CO2 With a Molecular Iron Catalyst[J]. Nature, 2017, 548(7665): 74-77.
[4] KANG I-C, ZHANG Q, YIN S, et al. Improvement in Photocatalytic Activity of TiO2 Under Visible Irradiation Through Addition of N-TiO2[J]. Environmental Science & Technology, 2008, 42(10): 3622-3626.
[5] THOMPSON T L, YATES J T. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes[J]. Chemical Reviews, 2006, 106(10): 4428 -4453.
[6] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69 -96.
[7] NISAR J, TOPALIAN Z, DE SARKAR A, et al. TiO2-Based Gas Sensor: A Possible Application to SO2[J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8516-8522.
[8] FU G, VARY P S, LIN C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8889-8898.
[9] CHEN X, MAO S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews, 2007, 107(7): 2891 -2959.
[10] HENDERSON M A. A Surface Science Perspective on TiO2 Photocatalysis[J]. Sur ace Science Reports, 2011, 66(6-7): 185-297.
[11] YUEKUN L, LUNING W, DAWEI L, et al. TiO2-Based Nanomaterials: Design, Synthesis, and Applications[J]. Journal of Nanomaterials, 2015.
[12] CHEN M, GOODMAN D W. Catalytically Active Gold on Ordered Titania Suppor s[J]. Chemical Society Reviews, 2008, 37(9): 1860-1870.
[13] LAZZERI M, VITTADINI A, SELLONI A. Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces[J]. Physical Review B, 2002, 63(15): 155409.
[14] THOMAS A G, SYRES K L. Adsorption of Organic Molecules on Rutile TiO2 and Anatase TiO2 Single Crystal Surfaces[J]. Chemical Society Reviews, 2012, 41(11): 4207-4217.
[15] FUJISHIMA A, RAO T N, TRYK D A. Titanium Dioxide Photocatalysis[J]. Journal of Photochemistry and Photobiology C, 2000, 1(1): 1-21.
[16] GUO Q, ZHOU C, MA Z, et al. Elementary Photocatalytic Chemistry on TiO2 Surfaces[J]. Chemical Society Reviews, 2016, 45(13): 3701-3730.
[17] HENDERSON M A, LYUBINETSKY I. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)[J]. Chemical Reviews, 2013, 113(6): 4428-4455.
[18] LINSEBIGLER A L, LU G, YATES J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95(3): 735 -758.
[19] NI M, LEUNG M K, LEUNG D Y, et al. A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425.
[20] ZHOU C Y, REN Z F, TAN S J, et al. Site-specific Photocatalytic Splitting of Meth nol on TiO2(110)[J]. Chemical Science, 2010, 1(5): 575-580.
[21] GUO Q, XU C, REN Z, et al. Stepwise Photocatalytic Dissociation of Methanol a d Water on TiO2(110)[J]. Journal of The American Society, 2012, 134(32): 13366-13373.
[22] HANSEN J Ø, BEBENSEE R, MARTINEZ U, et al. Unravelling Site-Specific PhotoR actions of Ethanol on Rutile TiO2(110)[J]. Scientific Reports, 2016, 6(1): 21990.
[23] XU C, YANG W, GUO Q, et al. Photoinduced Decomposition of Formaldeh yde on a TiO2(110) Surface, Assisted by Bridge-Bonded Oxygen Atoms[J]. The Journal of Physical Chemistry Letters, 2013, 4(16): 2668-2673.
[24] XU C, YANG W, GUO Q, et al. Photoinduced Decomposition of Acetaldehyde on a Reduced TiO2(110) Surface: Involvement of Lattice Oxygen[J]. Physical ChemistryChemical Physics, 2016, 18(45): 30982-30989.
[25] FARFAN-ARRIBAS E, MADIX R J. Role of Defects in the Adsorption of AliphaticAlcohols on the TiO2(110) Surface[J]. Journal of Physical Chemistry B, 2002, 106(41):10680-10692.
[26] WENDT S, SPRUNGER P T, LIRA E, et al. The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania[J]. Science, 2008, 320(27): 1755 -1759.
[27] DIEBOLD U. The Surface Science of Titanium Dioxide[J]. Surface Science Reports, 2003, 48(5): 53-229.
[28] SEE A K, BARTYNSKI R. Inverse Photoemission Study of the Defective TiO 2(110) Surface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 2591-2596.
[29] GANDUGLIA-PIROVANO M V, HOFMANN A, SAUER J. Oxygen Vacancies in Transition Metal and Rare Earth Oxides: Current State of Understanding and Remaining Challenges[J]. Surface Science Reports, 2007, 62(6): 219-270.
[30] WENDT S, BECHSTEIN R, PORSGAARD S, et al. Comment on "Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2(110)"[J]. Physical Review Letters, 2010,104(25): 036806.
[31] MINATO T, SAINOO Y, KIM Y, et al. The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl Impurity Defects on Titanium Dioxide (110) Surfa ce[J]. Journal of Chemical Physics, 2009, 130(12): 1755.
[32] HENDERSON M A, EPLING W, PEDEN C, et al. Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110)[J]. Journal of Physical Chemistry B, 2003, 107(2): 534-545.
[33] TILOCCA A, DI VALENTIN C, SELLONI A. O2 Interaction and Reactivity on aModel Hydroxylated Rutile(110) Surface[J]. Journal of Physical Chemistry B, 2005,109(44): 20963-20967.
[34] DU Y, DESKINS N A, ZHANG Z, et al. Imaging Consecutive Steps of O2 Reactionwith Hydroxylated TiO2(110): Identification of HO2 and Terminal OH Intermediates[J]. Journal of Physical Chemistry C, 2009, 113(2): 666-671.
[35] MATTHIESEN J, WENDT S, HANSEN J Ø, et al. Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning TunnelingMicroscopy[J]. ACS Nano, 2009, 3(3): 517-526.
[36] TIAN H, XU B, FAN J, et al. Intrinsic Role of Excess Electrons in Surface Reactionson Rutile TiO2(110): Using Water and Oxygen as Probes[J]. The Journal of PhysicalChemistry C, 2018, 122(15): 8270-8276.
[37] WANG Z T, DESKINS A, HENDERSON M A, et al. Inhibitive Influence of OxygenVacancies for Photoactivity on TiO2(110)[J]. Physical Review Letters, 2012, 109(26):266103.
[38] WANG Z T, HENDERSON M A, LYUBINETSKY I. Origin of Coverage Dependencein Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged CoadsorbedHydroxyls[J]. ACS Catalysis, 2015, 5(11): 6463-6467.
[39] JIN X, LI C, XU C, et al. Photocatalytic C-C Bond Cleavage in Ethylene Glycol onTiO2: A Molecular Level Picture and the Effect of Metal Nanoparticles[J]. Journal ofCatalysis, 2017, 354: 37-45.
[40] FEI XU, XIAO CHEN, WENSHAO YANG, et al. Coverage Dependent EthyleneGlycol Photochemistry on Rutile-TiO2(110)[J]. Journal of Physical Chemistry C, 2020,124(27): 14632-14639.
[41] REDHEAD P A. Thermal Desorption of Gases[J]. Vacuum, 1962, 12(4): 203 -211.
[42] HENDERSON M A. An HREELS and TPD study of Water on TiO2(110): the Extent of Molecular Versus Dissociative Adsorption[J]. Surface Science, 1996, 355(1 -3): 151-166.
[43] HENDERSON M A, OTERO-TAPIA S, E. CASTRO M. The Chemistry of Methanolon the TiO2(110) Surface: The Influence of Vacancies and Coadsorbed Species[J].Faraday Discussions, 1999, 114(0): 313-329.
[44] SMITH A W, ARANOFF S. Thermodesorption of Gases from Solids[J]. The Journalof Physical Chemistry, 1958, 62(6): 684-686.
[45] FEDCHAK J A, DEFIBAUGH D R. Accurate Conductance Measurements of a Pinhole Orifice Using a Constant-Pressure Flowmeter[J]. Measurement, 2012, 45(10): 2449-2451.
[46] JR R D, HUFFSTETLER. Resistively Heated Molecular Beam Doser for WaterDeposition in Ultrahigh Vacuum[J]. Journal of Vacuun Science &Technology A, 2001,19(3): 1030-1031.
[47] HAGANS P L, DEKOVEN B M. A Laser Drilled Aperture for Use in an UltrahighVacuum Gas Doser[J]. Journal of Vacuun Science &Technology A, 1989, 7(6): 3375 -3377.
[48] GREENWOOD N N, EARNSHAW A. Chemistry of the Elements[M]. Elsevier, 2012.
[49] HENRICH V E, COX P A. The Surface Science of Metal Oxides[M]. CambridgeUniversity Press, 1996.
[50] KURTZ R L, STOCK-BAUER R, MSDEY T E. Synchrotron Radiation Studies of H2OAdsorption on TiO2(110)[J]. Surface Science Reports, 1989, 218(1): 178-200.
[51] HENDERSON M A. Evidence for Bicarbonate Formation on Vacuum AnnealedTiO2(110) Resulting From a Precursor-Mediated Interaction Between CO2 and H2O[J]. Surface Science, 1998, 400(1–3): 203-219.
[52] THOMPSON T L, YATES J T. TiO2-based Photocatalysis: Surface Defects, Oxygenand Charge Transfer[J]. Topics in Catalysis, 2005, 35(3): 197-210.
[53] DIEBOLD U, ANDERSON J F, NG K-O, et al. Evidence for the Tunneling Site onTransition-Metal Oxides: TiO2(110)[J]. Physical Review Letters, 1996, 77(7): 1322.
[54] CHEN X, SHEN S, GUO L, et al. Semiconductor-based Photocatalytic HydrogenGeneration[J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[55] KITANO M, MATSUOKA M, UESHIMA M, et al. Recent Developments in TitaniumOxide-Based Photocatalysts[J]. Applied Catalysis A: General, 2007, 325(1): 1-14.
[56] LEUNG D Y, FU X, WANG C, et al. Hydrogen Production Over Titania-BasedPhotocatalysts[J]. Chemistry and Sustainable Chemistry, 2010, 3(6): 681-694.
[57] LIU G, WANG L, YANG H G, et al. Titania-Based Photocatalysts—Crystal Growth,Doping and Heterostructuring[J]. Journal of Materials Chemistry, 2010, 20(5): 831 -843.
[58] FUJISHIMA A, ZHANG X, TRYK D A. TiO2 Photocatalysis and Related SurfacePhenomena[J]. Surface Science Reports, 2008, 63(12): 515-582.
[59] MILLS A, DAVIES R H, WORSLEY D. Water Purification by SemiconductorPhotocatalysis[J]. Chemical Society Reviews, 1993, 22(6): 417-425.
[60] DESKINS N A, ROUSSEAU R, DUPUIS M. Defining the Role of Excess Electrons inthe Surface Chemistry of TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(13):5891-5897.
[61] FARFAN-ARRIBAS E, MADIX R J. Role of Defects in the Adsorption of AliphaticAlcohols on the TiO2(110) Surface[J]. Journal of Physical Chemistry B, 2002, 106(41):10680-10692.
[62] ZHENJUN L, BRUCE D K, ZDENEK D L. Dehydration and Dehydrogenation ofEthylene Glycol on Rutile TiO2(110)[J]. Physical Chemistry Chemical Physics, 2013,15: 12180-12186.
[63] LONG C, ZHENJUN L, SCOTT S R, et al. Molecular Hydrogen Formation fromProximal Glycol Pairs on TiO2(110)[J]. Journal of the American Chemical Society,2014, 136(15): 5559-5562.
[64] DANDA P A, YOON Y, ZHENJUN L, et al. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)[J]. ACS Nano, 2013, 7(11): 10414-10423.
[65] LI Z, SMITH R S, KAY B D, et al. Determination of Absolute Coverages for SmallAliphatic Alcohols on TiO2(110)[J]. Journal of Physical Chemistry C, 2011, 115(45):22534-22539.
[66] YATES J T, RUBIN L G. Experimental Innovations in Surface Science: A Guide toPractical Laboratory Methods and Instruments[J]. Physics Today, 1998, 51(8): 66.
[67] FENG H, TAN S, TANG H, et al. Temperature- and Coverage-Dependent Kinetics of Photocatalytic Reaction of Methanol on TiO2(110)-(1×1) Surface[J]. The Journal ofPhysical Chemistry C, 2016, 120(10): 5503-5514.
[68] SHEN M, HENDERSON M A. Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2[J]. The Journal of PhysicalChemistry Letters, 2011, 2(21): 2707-2710.
[69] NADEEM A, MUIR J, CONNELLY K, et al. Ethanol Photo-Oxidation on a RutileTiO2(110) Single Crystal Surface[J]. Physical Chemistry Chemical Physics, 2011,13(17): 7637-7643.
[70] HENDERSON M A, SZANYI J, PEDEN C H. Conversion of N2O to N2 on TiO2(110)[J]. Catalysis Today, 2003, 85(2-4): 251-266.
[71] LISACHENKO A A, MIKHAILOV R V, BASOV L L, et al. Photocatalytic Reductionof NO by CO on Titanium Dioxide Under Visible Light Irradiation[J]. The Journal ofPhysical Chemistry C, 2007, 111(39): 14440-14447.
[72] LIRA E, HANSEN J Ø, HUO P, et al. Dissociative and Molecular Oxygen Chemisorption Channels on Reduced Rutile TiO2(110): An STM and TPD study[J]. Surface Science, 2010, 604(21-22): 1945-1960.
[73] ZHANG Z, YATES J T. Effect of Adsorbed Donor and Acceptor Molecules on Electron Stimulated Desorption: O2/TiO2(110)[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2185-2188.
[74] LONG C, ZHENJUN L, SCOTT S R, et al. Molecular Hydrogen Formation Proximal Glycol Pairs on TiO2(110)[J]. Journal of the American Chemical Society, 2014, 136(15): 5559-5562.
修改评论