中文版 | English
题名

碳龙配合物修饰的石墨双炔的合成及其电催化氮气还原研究

其他题名
SYNTHESIS AND ELECTROCATALYTICNITROGEN REDUCTION STUDY OF“CARBOLONG” COMPLEX MODIFIEDGRAPHDIYNE DERIVATIVES
姓名
姓名拼音
LI Fan
学号
12032114
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
段乐乐
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,石墨炔作为一种新型的二维碳材料,因其独特的结构特征引起了越来越多的关注。石墨炔仅由sp 和sp2 杂化的碳原子组成,可以看作用炔键将苯环相互连接起来而形成的一种二维材料。石墨炔中炔键与苯环形成的大共轭体系使其具有较高的电导率以及结构稳定性,本征的空洞结构提供了良好的传质条件,使其逐渐成为一种优质的催化剂基底材料。已有很多报道使用石墨炔负载各种金属单原子、团簇和纳米粒子的工作,并且于各种催化反应中均有应用,然而对于石墨炔负载分子却罕有人研究。我们基于溶液法合成石墨炔的炔炔键偶联机理,向合成石墨炔前体中加入含有端基炔结构的分子,将分子通过共价连接形式负载到了石墨炔中,成功实现基底材料和分子负载的一步反应。
本课题研究内容如下:
(1) 以三乙炔基苯为前体,在吡啶溶液中于铜片表面以Glaser-Hey 偶联制备石墨炔衍生物-氢取代石墨炔(Hydrogen substituted Graphdiyne,HsGDY),并以此为模板反应,在反应前体三乙炔基苯中加入含有端基炔的碳龙配合物,实现将碳龙配合物以共价连接的方式负载到HsGDY 基底上,并通过Talos 透射电子显微镜、双球差校正透射电子显微镜、拉曼光谱、红外光谱、X 射线衍射、X 射线光电子能谱等对其表征并证明了碳龙配合物的成功负载,实现了共价连接的均相分子非均相化。
(2) 对合成出的氢取代石墨炔负载的碳龙配合物Os@HsGDY 进行电催化氮气还原性能测试。搭建了一套精密且严谨的电催化氮气还原装置,包括严格的氮气纯化装置和用于电解的H 型电解池,使用阳离子色谱检测电解液中的铵根离子浓度进而计算得到法拉第效率和氨产率来确定Os@HsGDY 的电催化氮气还原性能。结果表明相较于原本无电催化氮气还原性能的碳龙分子,负载后的Os@HsGDY 具有一定的氮还原催化性能。虽然相较于目前已经报道的一些氮还原催化剂,Os@HsGDY 在性能上仍有一定差距,然而其具有优异的稳定性和可回收性,这也为众多高性能却难以持续稳定和回收利用的均相分子催化剂的非均相化提供了一个可行的方案。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010, 46(19): 3256-3258.
[2] BAUGHMAN R, ECKHARDT H, KERTESZ M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. The Journal of chemical physics, 1987, 87(11): 6687-6699.
[3] NARITA N, NAGAI S, SUZUKI S, et al. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B, 1998, 58(16): 11009.
[4] HUANG C S, LI Y L. Structure of 2D graphdiyne and its application in energy fields[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1314-1329.
[5] HUANG C, LI Y, WANG N, et al. Progress in research into 2D graphdiyne-based materials[J].Chemical reviews, 2018, 118(16): 7744-7803.
[6] IVANOVSKII A. Graphynes and graphdyines[J]. Progress in Solid State Chemistry, 2013, 41(1-2): 1-19.
[7] 周劲媛, 张锦, 刘忠范. 石墨双炔的合成方法[J]. 物理化学学报, 2018, 34(9): 977-991.
[8] CELAYA C A, MUNIZ J, SANSORES L E. Theoretical study of graphyne-𝛾 doped with N atoms: the quest for novel catalytic materials[J]. Fuel, 2019, 235: 384-395.
[9] ENYASHIN A N, IVANOVSKII A L. Graphene allotropes[J]. physica status solidi (b), 2011,248(8): 1879-1883.
[10] JIAO Y, DU A, HANKEL M, et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification[J]. Chemical Communications, 2011, 47(43): 11843-11845.
[11] LIN Z Z, WEI Q, ZHU X. Modulating the electronic properties of graphdiyne nanoribbons[J].Carbon, 2014, 66: 504-510.
[12] LUO G, QIAN X, LIU H, et al. Quasiparticle energies and excitonic effects of the twodimensional carbon allotrope graphdiyne: Theory and experiment[J]. Physical Review B, 2011,84(7): 075439.
[13] ZHENG Q, LUO G, LIU Q, et al. Structural and electronic properties of bilayer and trilayer graphdiyne[J]. Nanoscale, 2012, 4(13): 3990-3996.
[14] BU H, ZHAO M, WANG A, et al. First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons[J]. Carbon, 2013, 65: 341-348.
[15] KIM B G, CHOI H J. Graphyne: Hexagonal network of carbon with versatile Dirac cones[J].Physical Review B, 2012, 86(11): 115435.
[16] MATSUOKA R, SAKAMOTO R, HOSHIKO K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139(8): 3145-3152.
[17] GAO X, ZHU Y, YI D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Science advances, 2018, 4(7): eaat6378.
[18] CHEN J, XI J, WANG D, et al. Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction[J]. The journal of physical chemistry letters, 2013, 4(9):1443-1448.
[19] SRINIVASU K, GHOSH S K. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications[J]. The Journal of Physical Chemistry C, 2012, 116(9):5951-5956.
[20] LONG M, TANG L, WANG D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions[J]. ACS nano, 2011, 5(4): 2593-2600.
[21] ELIAS D, GORBACHEV R, MAYOROV A, et al. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nature Physics, 2011, 7(9): 701-704.
[22] MALKO D, NEISS C, VINES F, et al. Competition for graphene: graphynes with directiondependent dirac cones[J]. Physical review letters, 2012, 108(8): 086804.
[23] NARITA N, NAGAI S, SUZUKI S, et al. Electronic structure of three-dimensional graphyne [J]. Physical Review B, 2000, 62(16): 11146.
[24] QIAN X, NING Z, LI Y, et al. Construction of graphdiyne nanowires with high-conductivity and mobility[J]. Dalton transactions, 2012, 41(3): 730-733.
[25] ZHOU J, GAO X, LIU R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society, 2015, 137(24): 7596-7599.
[26] LI G, LI Y, QIAN X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. The Journal of Physical Chemistry C, 2011, 115(6): 2611-2615.
[27] GAO X, LI J, DU R, et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell[J]. Advanced Materials, 2017, 29(9): 1605308.
[28] ZHOU J, XIE Z, LIU R, et al. Synthesis of ultrathin graphdiyne film using a surface template [J]. ACS applied materials & interfaces, 2018, 11(3): 2632-2637.
[29] LIU R, GAO X, ZHOU J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials, 2017, 29(18): 1604665.
[30] ZUO Z, SHANG H, CHEN Y, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications, 2017, 53(57): 8074-8077.
[31] YANG C, LI Y, CHEN Y, et al. Mechanochemical Synthesis of 𝛾-Graphyne with Enhanced Lithium Storage Performance[J]. Small, 2019, 15(8): 1804710.
[32] DING W, SUN M, ZHANG Z, et al. Ultrasound-promoted synthesis of 𝛾-graphyne for supercapacitor and photoelectrochemical applications[J]. Ultrasonics Sonochemistry, 2020, 61:104850.
[33] WU L, LI Q, YANG C, et al. Constructing a novel TiO2/𝛾-graphyne heterojunction for enhanced photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(42): 20947-20955.
[34] LI Q, YANG C, WU L, et al. Converting benzene into 𝛾-graphyne and its enhanced electrochemical oxygen evolution performance[J]. Journal of Materials Chemistry A, 2019, 7(11):5981-5990.
[35] 李乔丹, 李永, 唐佳宁, 等. 氢取代石墨单炔的机械化学合成及其电催化特性[J]. 物理化学学报, 2018, 34(9): 1080-1087.
[36] LI Q, LI Y, CHEN Y, et al. Synthesis of 𝛾-graphyne by mechanochemistry and its electronic structure[J]. Carbon, 2018, 136: 248-254.
[37] BIROJU R K, DAS D, SHARMA R, et al. Hydrogen evolution reaction activity of graphene–MoS2 van der Waals heterostructures[J]. ACS Energy Letters, 2017, 2(6): 1355-1361.
[38] WANG F, HE P, LI Y, et al. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis[J]. Advanced Functional Materials, 2017, 27(7): 1605802.
[39] CHEN Y, FAN Z, ZHANG Z, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications[J]. Chemical reviews, 2018, 118(13): 6409-6455.
[40] YAO Y, JIN Z, CHEN Y, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for highperformance hydrogen evolution reaction[J]. Carbon, 2018, 129: 228-235.
[41] YU H, XUE Y, HUI L, et al. Controlled growth of MoS2 nanosheets on 2D N-doped graphdiyne nanolayers for highly associated effects on water reduction[J]. Advanced Functional Materials, 2018, 28(19): 1707564.
[42] LIU Q, FANG Q, CHU W, et al. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution[J]. Chemistry of Materials, 2017, 29(11): 4738-4744.
[43] HUI L, XUE Y, HE F, et al. Efficient hydrogen generation on graphdiyne-based heterostructure [J]. Nano Energy, 2019, 55: 135-142.
[44] XUE Y, GUO Y, YI Y, et al. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy, 2016, 30: 858-866.
[45] XUE Y, LI J, XUE Z, et al. Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31083-31091.
[46] HE J, MA S Y, ZHOU P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+ U calculations[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26313-26321.
[47] XUE Y, HUANG B, YI Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature communications, 2018, 9(1): 1-10.
[48] YU H, XUE Y, HUANG B, et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production[J]. IScience, 2019, 11: 31-41.
[49] LI J, GAO X, JIANG X, et al. Graphdiyne: a promising catalyst–support to stabilize cobalt nanoparticles for oxygen evolution[J]. ACS Catalysis, 2017, 7(8): 5209-5213.
[50] KUANG P, ZHU B, LI Y, et al. Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts[J]. Nanoscale Horizons, 2018, 3(3): 317-326.
[51] ZHAO Y, YANG N, YAO H, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(18): 7240-7244.
[52] LI Q, YANG C, WU L, et al. Converting benzene into 𝛾-graphyne and its enhanced electrochemical oxygen evolution performance[J]. Journal of Materials Chemistry A, 2019, 7(11): 5981-5990.
[53] ZHAO X, PACHFULE P, LI S, et al. Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickel-Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite [J]. Angewandte Chemie, 2018, 130(29): 9059-9064.
[54] YANG Y, YAO H, YU Z, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430.
[55] CAO B, CHENG Y, HU M, et al. Efficient and Durable 3D Self-Supported Nitrogen-Doped Carbon-Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phaseand Morphology-Dependent Overall Water Splitting Performance[J]. Advanced Functional Materials, 2019, 29(44): 1906316.
[56] JIANG H, GU J, ZHENG X, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy & Environmental Science, 2019, 12(1): 322-333.
[57] LAI J, LI S, WU F, et al. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting[J]. Energy & Environmental Science, 2016, 9(4): 1210-1214.
[58] XUE Y, ZUO Z, LI Y, et al. Graphdiyne-supported NiCo2S4 nanowires: a highly active and stable 3D bifunctional electrode material[J]. Small, 2017, 13(31): 1700936.
[59] HUI L, JIA D, YU H, et al. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting[J]. ACS applied materials & interfaces, 2018, 11(3): 2618-2625.
[60] FANG Y, XUE Y, HUI L, et al. In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting[J]. Nano Energy, 2019, 59: 591-597.
[61] HUI L, XUE Y, HUANG B, et al. Overall water splitting by graphdiyne-exfoliated andsandwiched layered double-hydroxide nanosheet arrays[J]. Nature communications, 2018, 9(1): 1-11.
[62] XING C, XUE Y, HUANG B, et al. Fluorographdiyne: a metal-free catalyst for applications in water reduction and oxidation[J]. Angewandte Chemie, 2019, 131(39): 14035-14041.
[63] WANG S, YU D, DAI L. Polyelectrolyte functionalized carbon nanotubes as efficient metalfree electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2011, 133(14): 5182-5185.
[64] LIU R, LIU H, LI Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for highperformance oxygen reduction reactions[J]. Nanoscale, 2014, 6(19): 11336-11343.
[65] LV Q, SI W, YANG Z, et al. Nitrogen-doped porous graphdiyne: a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS applied materials & interfaces, 2017, 9(35): 29744-29752.
[66] ZHANG S, CAI Y, HE H, et al. Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium[J]. Journal of Materials Chemistry A, 2016, 4(13): 4738-4744.
[67] ZHAO Y, WAN J, YAO H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature chemistry, 2018, 10(9): 924-931.
[68] SHANG H, ZUO Z, ZHENG H, et al. N-doped graphdiyne for high-performance electrochemical electrodes[J]. Nano Energy, 2018, 44: 144-154.
[69] LV Q, SI W, HE J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nature communications, 2018, 9(1): 1-11.
[70] SI W, YANG Z, WANG X, et al. Fe, N-codoped graphdiyne displaying efficient oxygen reduction reaction activity[J]. ChemSusChem, 2019, 12(1): 173-178.
[71] LI Y, LIU Y, LI Z, et al. Pd nanoparticles anchored on N-rich graphdiyne surface for enhanced catalysis for alkaline electrolyte oxygen reduction[J]. Int. J. Electrochem. Sci, 2018, 13: 12226-12237.
[72] GAO Y, CAI Z, WU X, et al. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations[J]. ACS Catalysis, 2018, 8(11): 10364-10374.
[73] GE P, ZHAI X, LIU X, et al. Graphdiyne-supported single-cluster electrocatalysts for highly efficient carbon dioxide reduction reaction[J]. Nanoscale, 2022.
[74] LIU T, WANG Q, WANG G, et al. Electrochemical CO2 reduction on graphdiyne: a DFT study[J]. Green Chemistry, 2021, 23(3): 1212-1219.
[75] YANG M, WANG Z, JIAO D, et al. Tuning precise numbers of supported nickel clusters on graphdiyne for efficient CO2 electroreduction toward various multi-carbon products[J]. Journal of Energy Chemistry, 2022.
[76] RONG W, ZOU H, ZANG W, et al. Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction[J]. Angewandte Chemie International Edition, 2021, 60(1): 466-472.
[77] WAN J, ZHENG J, ZHANG H, et al. Single atom catalysis for electrocatalytic ammonia synthesis[J]. Catalysis Science & Technology, 2022, 12(1): 38-56.
[78] 范天熙. MOFs 催化剂制备及其低温电催化合成氨性能[D]. 北京化工大学, 2016.
[79] ZOU H, RONG W, WEI S, et al. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser[J]. Proceedings of the National Academy of Sciences, 2020, 117(47): 29462-29468.
[80] ZOU H, RONG W, LONG B, et al. Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions[J]. ACS Catalysis, 2019, 9(12):10649-10655.
[81] ZOU H, ARACHCHIGE L J, RONG W, et al. Low-Valence Metal Single Atoms on Graphdiyne Promotes Electrochemical Nitrogen Reduction via M-to-N2 𝜋-Backdonation[J]. Advanced Functional Materials, 2022: 2200333.
[82] ZHU C, LI S, LUO M, et al. Stabilization of anti-aromatic and strained five-membered rings with a transition metal[J]. Nature Chemistry, 2013, 5(8): 698-703.
[83] HE J, WANG N, CUI Z, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries[J]. Nature communications, 2017, 8(1): 1-11.
[84] GIDDEY S, BADWAL S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594.
[85] LASSALETTA L, BILLEN G, GRIZZETTI B, et al. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland[J].Environmental Research Letters, 2014, 9(10): 105011.
[86] WANG S, ICHIHARA F, PANG H, et al. Nitrogen fixation reaction derived from nanostructured catalytic materials[J]. Advanced Functional Materials, 2018, 28(50): 1803309.
[87] GUO J, CHEN P. Catalyst: NH3 as an energy carrier[J]. Chem, 2017, 3(5): 709-712.
[88] XU H, ITHISUPHALAP K, LI Y, et al. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes[J]. Nano Energy, 2020, 69: 104469.
[89] YAN X, LIU D, CAO H, et al. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions[J]. Small Methods, 2019, 3(9): 1800501.
[90] GALLOWAY J N, COWLING E B, SEITZINGER S P, et al. Reactive nitrogen: too much of a good thing?[J]. Ambio, 2002, 31(2): 60-63.
[91] LI S J, BAO D, SHI M M, et al. Amorphizing of Au nanoparticles by CeOx–rGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced materials, 2017, 29(33): 1700001.
[92] SHI M M, BAO D, WULAN B R, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550.
[93] ZHANG J, JI Y, WANG P, et al. Adsorbing and activating N2 on heterogeneous Au–Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2020, 30(4): 1906579.
[94] HUANG H, XIA L, SHI X, et al. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2018, 54(81): 11427-11430.
[95] LAN R, IRVINE J T, TAO S. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific reports, 2013, 3(1): 1-7.
[96] WANG J, YU L, HU L, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature communications, 2018, 9(1): 1-7.
[97] SHI M M, BAO D, LI S J, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124.
[98] KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000(17): 1673-1674.
[99] YAO Y, WANG H, YUAN X Z, et al. Electrochemical nitrogen reduction reaction on ruthenium[J]. ACS Energy Letters, 2019, 4(6): 1336-1341.
[100] WAN Y, XU J, LV R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90.
[101] LING C, ZHANG Y, LI Q, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270.
[102] ANDERSEN S Z, ČOLIĆ V, YANG S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508.

所在学位评定分委会
化学系
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336408
专题理学院_化学系
推荐引用方式
GB/T 7714
李凡. 碳龙配合物修饰的石墨双炔的合成及其电催化氮气还原研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032114-李凡-化学系.pdf(12359KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李凡]的文章
百度学术
百度学术中相似的文章
[李凡]的文章
必应学术
必应学术中相似的文章
[李凡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。