[1] Majorana E. Teoria simmetrica dell'elettrone e del positrone[J]. Il Nuovo Cimento (1924-1942), 1937, 14(4): 171.
[2] Stern A. Non-Abelian states of matter[J]. Nature.
[3] M Ae No Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper[J]. Nature, 1994, 372(6506): 532-534.
[4] Maeno Y, Yoshida K, Hashimoto H, et al. Two-Dimensional Fermi Liquid Behavior of the Superconductor Sr2RuO4[J]. Journal of the Physical Society of Japan, 1997, 66(5): 1405-1408.
[5] T M Rice, M Sigrist. Sr2RuO4: an electronic analogue of 3He?[J]. Journal of Physics: Condensed Matter, 1995, 7(47): L643-L648.
[6] Kitaev, Yu A. Unpaired Majorana fermions in quantum wires[J]. 2001, 44(10): 131–136.
[7] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[8] Imada M, Fujimori A, Tokura Y. Metal-insulator transitions[J]. Reviews of Modern Physics,1998.
[9] Witczak-Krempa W, Chen G, Kim Y B, et al. Correlated quantum phenomena in the strong spin-orbit regime[J]. Annual Review of Condensed Matter Physics, 2013, 5(1): 57-82.
[10] G, Kotliar, S, et al. Electronic structure calculations with dynamical mean-field theory[J]. Reviews of Modern Physics, 2006.
[11] Gunasekera J, Chen Y, Kremenak J W, et al. Mott insulator-to-metal transition in yttriumdoped CaIrO3[J]. Journal of Physics. Condensed Matter, 2015, 27(5).
[12] Hirai D, Matsuno J, Nishio-Hamane D, et al. Semimetallic transport properties of epitaxially stabilized perovskite CaIrO3 films[J]. Applied Physics Letters, 2015, 107(1): 076402.
[13] Yu T, Liu Q, Chen P, et al. Interfacial spin-glass-like state and exchange bias in epitaxial iridate-manganite heterostructure[J]. Journal of Alloys & Compounds, 2019.
[14] 万贤纲. 5d 过渡金属氧化物--Weyl 半金属奇异量子物性研究[J]. 物理学进展, 2014(1): 28-46.
[15] Mattheiss L F. Electronic structure of RuO2, OsO2, and IrO2[J]. Physical Review B, 1976,13(6): 2433-2450.
[16] Watanabe H, Shirakawa T, Yunoki S. Monte Carlo Study of an Unconventional Superconducting Phase in Iridium Oxide J_(eff) = 1/2 Mott Insulators Induced by Carrier Doping[J]. Physical review letters, 2013, 110(2): 027002.1-027002.5.
[17] ONNES, Kamerlingh H. The Condensation of Helium[J]. Nature, 1908, 77(2007): 559-559.
[18] Onnes H K. The resistance of pure mercury at helium temperatures. 1911.
[19] MEISSNER W, OCHSENFELD R. Elementary properties of superconductors[J].Naturwissenschaften, 1933, 21(44): 787-788.
[20] Maxwell E. Isotope Effect in the Superconductivity od Mercury[J]. Phys Rev, 1950, 78(4): 477.
[21] Bardeen J, Cooper L N, Schrieffer J R. Microscopic Theory of Superconductivity[J]. Journal of Superconductivity, 1957, 106(1): 162-164.
[22] 任清褒, 朱维婷. 超导电性及其应用的研究现状和前景[J]. 丽水师范专科学校学报,2002(05): 31-37.
[23] Yabuki N, Moriya R, Arai M, et al. Supercurrent in van der Waals Josephson junction[J]. Nature Communications, 2016, 7: 10616.
[24] Bednorz J G, KA Müller. Possible High Tc Superconductivity in the Ba-La-Cu-O System[J]. Zeitschrift für Physik B Condensed Matter, 1993, 64(2): 267-271.
[25] Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase YBa-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910.
[26] Adachi H, Satoh T, Setsune K. Highly oriented Hg-Ba-Ca-Cu-O superconducting thin films[J].Applied Physics Letters, 1993, 63: 3628-3629.
[27] 仲勇. 铜氧化物高温超导体中铜氧面的制备与性质研究[D]. 清华大学, 2018.
[28] 王美晓. 拓扑绝缘体和超导体异质界面的研究[D]. 上海交通大学, 2015.
[29] Andreev, A.F, Sharvin, et al. The thermal conductivity of the intermediate state in superconductors[J]. Soviet Journal of Experimental & Theoretical Physics, 1967, 26.
[30] 段路云. 多重外尔半金属超导异质结中的安德列夫反射[D]. 电子科技大学, 2019.
[31] Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion[J]. Physical Review B, 1982, 25(7): 4515-4532.
[32] 苗子京. Majorana 边态导致的交叉 Andreev 反射研究[D]. 河北师范大学, 2016.
[33] 何庆林. 拓扑超导与马约拉纳费米子[J]. 科学通报, 2018, 63(26): 2717-2730.
[34] Joynt R, Taillefer L. The superconducting phases of UPt3[J]. Reviews of Modern Physics, 2002, 74(1): 235-294.
[35] Schoop L M, Xie L S, Ru C, et al. Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z2 topology for the superconductor[J]. Physical Review B, 2015, 91(21): 579–600.
[36] Xing Y, Wang H, Li C, et al. Superconductivity in topologically nontrivial material Au2Pb[J]. 2016.
[37] Yun W, Drachuck G, Wang L L, et al. Electronic structure of topological superconductor candidate Au2Pb[J]. 2018.
[38] Wang, Y S, J Y, et al. Fully gapped superconducting state in Au2Pb: A natural candidate for topological superconductor. EPL, 2016, 116(5/6).
[39] Xing Y, Shao Z, Ge J, et al. Surface Superconductivity in the type II Weyl Semimetal TaIrTe4[J]. 国家科学评论: 英文版, 2020, 7(3): 9.
[40] Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices[J]. Science, 2012, 336(TN.6084): 1003-1007.
[41] Rokhinson L P, Liu X, Furdyna J K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles[J]. Nature Physics.
[42] 王健, 刘超飞. 拓扑超导体和马约拉纳费米子[J]. 山东大学学报(理学版), 2016(9): 1-10.
[43] Wang M X, Liu C, Xu J P, et al. The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films[J]. Science, 2012, 336(6077): 52.
[44] Sun H H, Zhang K W, Hu L H, et al. Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor[J]. Physical Review Letters, 2016, 116(25): 257003-257003.
[45] Young S M, Zaheer S, Teo J C Y, et al. Dirac Semimetal in Three Dimensions[J]. Physical Review Letters, 2011, 108(14).
[46] Huang C, Zhou B T, Zhang H, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1): 2217.
[47] 顾开元, 罗天创, 葛军, 等. 拓扑材料中的超导[J]. 物理学报, 2020, 69(2): 19.
[48] Moon S J, Jin H, Kim K W, et al. Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in 5d Transition Metal Oxides Srn+1IrnO3n+1 (n=1, 2, and ∞)[J]. Physical Review Letters, 2008.
[49] 杜梅. 掺杂 SrIrO3 钙钛矿的结构分析和物性研究[D]. 哈尔滨工业大学, 2019.
[50] Zhang L, Pang B, Chen Y B, et al. Review of Spin–Orbit Coupled Semimetal SrIrO3 in Thin Film Form[J]. C R C Critical Reviews in Solid State Sciences.
[51] Groenendijk D J, Manca N, Mattoni G, et al. Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures[J]. Applied physics letters, 2016, 109(4): 041906-1-041906-4.
[52] Ohgushi K, Yagi T, Gotou H, et al. Metallization of quasi-two-dimensional Mott insulator CaIrO3 with S = 1/2 spins[J]. Physica B Condensed Matter, 2009, 404(19): 3261-3263.
[53] Biswas A, Jeong Y H. Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films[J]. Journal of Applied Physics, 2015, 117(19): 195305-.
[54] Kim B J, Jin H, Moon S J, et al. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4[J]. Physical review letters, 2008, 101(7): 076402.
[55] Kim B J, Ohsumi H, Komesu T, et al. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4[J]. ence, 2009, 323(5919): 1329-1332.
[56] Hosub, Jin, Hogyun, et al. Anisotropic exchange interactions of spin-orbit-integrated states in Sr2IrO4[J]. Physical Review B, 2009.
[57] Watanabe H, Shirakawa T, Yunoki S. Microscopic Study of a Spin-Orbit-Induced Mott Insulator in Ir Oxides[J]. Physical Review Letters, 2010.
[58] Arita R, J Kuneš, Kozhevnikov A V, et al. Ab initio Studies on the Interplay between SpinOrbit Interaction and Coulomb Correlation in Sr2IrO4 and Ba2IrO4[J]. Physical Review Letters, 2012, 108(8):086403.
[59] Jorgensen J D, Beno M A, Hinks D G, et al. Oxygen ordering and the orthorhombic-totetragonal phase transition in[J]. Physical Review B, 1987, 36(7): 3608-3616.
[60] Capponi J J, Chaillout C, Hewat A W, et al. Structure of the 100 K Superconductor Ba2YCu3O7 between (5÷300)K by Neutron Powder Diffraction[J]. Epl, 1987, 3(12): 1301.
[61] Jorgensen J D, Veal B W, Paulikas A P, et al. Structural Properties of Oxygen-Deficient YBa2-Cu3O7-δ[J]. Physical review. B, Condensed matter, 1990, 41(4): 1863-1877.
[62] Cava R J, Hewat A W, Hewat E A, et al. Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox[J]. Physica C Superconductivity, 1990,165(5-6): 419-433.
[63] 李文敏. 新型铜基超导体及层状化合物的高压合成与物性研究[D]. 中国科学院大学(中国科学院物理研究所), 2018.
[64] Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides[J]. Nature, 2015, 518(7538): 179-86.
[65] KITAEV A. Fault-tolerant quantum computation by anyons[J]. Annals of Physics, 2003, 303(1): 2-30.
[66] 耿浩. MoTe2/Nb 约瑟夫森结低温输运性质的研究[D]. 哈尔滨工业大学, 2020.
[67] 杨先卫. 大学物理下[M]. 北京: 北京邮电大学出版社, 2017: 232-234.
[68] 王欢文, 王雪峰. 新型纳米结构材料的设计合成及其电容性能研究[M]. 上海: 同济大学出版社, 2018: 14-16.
[69] Franz M. Majorana's wires[J]. Nature Nanotechnology, 2013, 8(3): 149.
[70] Gazibegovic S, Car D, Hao Z, et al. Epitaxy of advanced nanowire quantum devices[J].Nature.
[71] Albrecht S M, Higginbotham A P, Madsen M, et al. Exponential protection of zero modes in Majorana islands[J]. Nature, 2016, 531(7593): 206.
[72] 张琨, 林罡, 刘刚, 等. 电子束光刻技术的原理及其在微纳加工与纳米器件制备中的应用[J]. 电子显微学报, 2006, 25(2): 7.
[73] Weng H M, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations[J]. J Phys Condens Matter, 2016, 28(30): 303001.
[74] Smith H M, Turner A F. Vacuum Deposited Thin Films Using a Ruby Laser[J]. Appl Opt,1965, 4(1): 147-148.
[75] D, Dijkkamp, T, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 1987, 51(8): 619-619.
修改评论