中文版 | English
题名

CaIrO3/YBa2Cu3O7异质结的PLD生长及超导邻近效应研究

其他题名
PLD GROWTH AND SUPERCONDUCTING PROXIMITY EFFECT OF CrIrO3/YBa2Cu3O7 HETEROJUCTIONS
姓名
姓名拼音
AN Quanning
学号
12032057
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
何洪涛
导师单位
物理系
论文答辩日期
2022-05-12
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

马约拉纳费米子对于实现可容错量子计算具有重要意义。拓扑超导体有望承载这种神秘的马约拉纳束缚态,因此成为了凝聚态物理和材料科学领域最重要的研究领域之一。已有相关研究表明人们可以通过制备拓扑材料/超导体异质结结构,利用超导邻近效应在拓扑材料中诱导出拓扑超导相。

在本论文中,我们系统研究了拓扑半金属CaIrO3CIO/高温超导体YBa2Cu3O7YBCO)异质结体系的超导邻近效应,以期在CIO中诱导出超导。为此,我们进行了以下实验工作:优化脉冲激光沉积技术的生长条件,然后使用该技术成功生长出CIO/YBCO异质结薄膜样品;使用电子束曝光和离子刻蚀技术,制备出用于研究超导邻近效应的特定微纳器件;在温度低至100mK,磁场高达14T的稀释制冷机中细致测量器件的输运特性。

从测量到的器件电阻-温度曲线来看,YBCO层在25.5K以下变得超导。随着温度继续降低至15.7K以下,原本平坦的微分电阻谱在零偏置电流附近出现了下降,表明在超导YBCO和非超导CIO的界面处发生了安德烈夫反射。更有趣的是,随着温度进一步降至500mK以下,在微分电阻谱中开始出现一个完整的微分电阻谷。同时电阻-温度曲线在529mK以下也观察到了电阻的急剧下降。实验还发现该微分电阻谷对外部磁场敏感,随着磁场的增加而迅速缩小。这些现象表明,CIO层在超导邻近效应的影响下已经变得超导,并且正是超导CIO和金属电极的界面处发生的安德烈夫反射导致了500mK以下出现的微分微分电阻谷。此外,我们还利用BCS理论拟合了实验结果,得到CIO在零温时通过超导邻近效应诱导产生的超导带隙为5.1μeV

我们的工作成功证明了可以使用d波超导体YBCO通过超导邻近效应在拓扑半金属CIO中诱导出超导,从而为我们继续探索CIO/YBCO异质结中可能的拓扑超导及其它有趣的物理机制打下了坚实的基础。

其他摘要

Majorana fermion has been shown to be of great importance to the r­ealization of fault-tolerant quantum computation. Topological superconduc­t­ors are expected to host such mysterious Majorana bound states and thus have attracted intense research interest in condensed matter physics and m­aterial science. Previous studies have revealed that one possible way to search for topological superconductivity is to prepare topological materials/superconductor heterostructures. Due to superconducting proximity effect, the intriguing topological superconducting phase might be induced in the t­opological materials.

In this work, we have systematically studied the superconducting pro­ximity effect in heterostructures composed of topological semimetal CaIrO3(CIO) and high-temperature superconductor YBa2Cu3O7(YBCO), aiming t­o induce superconductivity in CIO. In order to do so, we have carried o­ut t­he following experimental works: Optimize the growth conditions of t­h­e pulsed laser deposition technique and then use this technique to successf­u­l­­ly synthesize the CIO/YBCO epitaxial heterostructures; Collectively imp­l­ement the e-beam lithography and ion etching techniques to fabricate de­v­ices specially designed for studying the superconductivity proximity effe­c­t; Measure the transport properties of the device in a dilution refrigerat­o­r with temperatures down to 100mK and magnetic fields up to 5T.

From the measured resistance-temperature curve of the device, the YBCO layer becomes superconducting below 25.5K. As the temperature continues to decrease below 15.7K, the originally flat differential resistance spectrum develops a dip in the vicinity of zero bias, indicating the occurrence of Andreev reflection at the interface between superconducting YBCO and non-superconducting CIO. More interestingly, with temperature further decreasing below 500mK, there begins to appear a well-formed differential resistance valley in the differential resistance spectra. Meanwhile, a sharp decrease of resistance is also noticed below 529mK in the resistance-temperature curve. The valley is found sensitive to the external magnetic field, shrinking quickly with increasing magnetic fields. These phenomena lead us to believe that the CIO layer has become superconducting due to the superconducting proximity effect and it is the Andreev reflection occurring at the interface between superconducting CIO and electrodes that gives rise to the valley structure below 500mK. We also use the BCS theory to fit the experimental results and obtain the induced zero-temperature superconducting gap of CIO to be 5.1μeV.

Our work successfully demonstrates that one can use the d-wave YBCO to induce superconductivity in topological semimetal CIO by the superconducting proximity effect, thus providing a solid foundation for us to continue to explore the possible topological superconductivity and other interesting physical phenomena in CIO/YBCO heterostructures.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] Majorana E. Teoria simmetrica dell'elettrone e del positrone[J]. Il Nuovo Cimento (1924-1942), 1937, 14(4): 171.
[2] Stern A. Non-Abelian states of matter[J]. Nature.
[3] M Ae No Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper[J]. Nature, 1994, 372(6506): 532-534.
[4] Maeno Y, Yoshida K, Hashimoto H, et al. Two-Dimensional Fermi Liquid Behavior of the Superconductor Sr2RuO4[J]. Journal of the Physical Society of Japan, 1997, 66(5): 1405-1408.
[5] T M Rice, M Sigrist. Sr2RuO4: an electronic analogue of 3He?[J]. Journal of Physics: Condensed Matter, 1995, 7(47): L643-L648.
[6] Kitaev, Yu A. Unpaired Majorana fermions in quantum wires[J]. 2001, 44(10): 131–136.
[7] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[8] Imada M, Fujimori A, Tokura Y. Metal-insulator transitions[J]. Reviews of Modern Physics,1998.
[9] Witczak-Krempa W, Chen G, Kim Y B, et al. Correlated quantum phenomena in the strong spin-orbit regime[J]. Annual Review of Condensed Matter Physics, 2013, 5(1): 57-82.
[10] G, Kotliar, S, et al. Electronic structure calculations with dynamical mean-field theory[J]. Reviews of Modern Physics, 2006.
[11] Gunasekera J, Chen Y, Kremenak J W, et al. Mott insulator-to-metal transition in yttriumdoped CaIrO3[J]. Journal of Physics. Condensed Matter, 2015, 27(5).
[12] Hirai D, Matsuno J, Nishio-Hamane D, et al. Semimetallic transport properties of epitaxially stabilized perovskite CaIrO3 films[J]. Applied Physics Letters, 2015, 107(1): 076402.
[13] Yu T, Liu Q, Chen P, et al. Interfacial spin-glass-like state and exchange bias in epitaxial iridate-manganite heterostructure[J]. Journal of Alloys & Compounds, 2019.
[14] 万贤纲. 5d 过渡金属氧化物--Weyl 半金属奇异量子物性研究[J]. 物理学进展, 2014(1): 28-46.
[15] Mattheiss L F. Electronic structure of RuO2, OsO2, and IrO2[J]. Physical Review B, 1976,13(6): 2433-2450.
[16] Watanabe H, Shirakawa T, Yunoki S. Monte Carlo Study of an Unconventional Superconducting Phase in Iridium Oxide J_(eff) = 1/2 Mott Insulators Induced by Carrier Doping[J]. Physical review letters, 2013, 110(2): 027002.1-027002.5.
[17] ONNES, Kamerlingh H. The Condensation of Helium[J]. Nature, 1908, 77(2007): 559-559.
[18] Onnes H K. The resistance of pure mercury at helium temperatures. 1911.
[19] MEISSNER W, OCHSENFELD R. Elementary properties of superconductors[J].Naturwissenschaften, 1933, 21(44): 787-788.
[20] Maxwell E. Isotope Effect in the Superconductivity od Mercury[J]. Phys Rev, 1950, 78(4): 477.
[21] Bardeen J, Cooper L N, Schrieffer J R. Microscopic Theory of Superconductivity[J]. Journal of Superconductivity, 1957, 106(1): 162-164.
[22] 任清褒, 朱维婷. 超导电性及其应用的研究现状和前景[J]. 丽水师范专科学校学报,2002(05): 31-37.
[23] Yabuki N, Moriya R, Arai M, et al. Supercurrent in van der Waals Josephson junction[J]. Nature Communications, 2016, 7: 10616.
[24] Bednorz J G, KA Müller. Possible High Tc Superconductivity in the Ba-La-Cu-O System[J]. Zeitschrift für Physik B Condensed Matter, 1993, 64(2): 267-271.
[25] Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase YBa-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910.
[26] Adachi H, Satoh T, Setsune K. Highly oriented Hg-Ba-Ca-Cu-O superconducting thin films[J].Applied Physics Letters, 1993, 63: 3628-3629.
[27] 仲勇. 铜氧化物高温超导体中铜氧面的制备与性质研究[D]. 清华大学, 2018.
[28] 王美晓. 拓扑绝缘体和超导体异质界面的研究[D]. 上海交通大学, 2015.
[29] Andreev, A.F, Sharvin, et al. The thermal conductivity of the intermediate state in superconductors[J]. Soviet Journal of Experimental & Theoretical Physics, 1967, 26.
[30] 段路云. 多重外尔半金属超导异质结中的安德列夫反射[D]. 电子科技大学, 2019.
[31] Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion[J]. Physical Review B, 1982, 25(7): 4515-4532.
[32] 苗子京. Majorana 边态导致的交叉 Andreev 反射研究[D]. 河北师范大学, 2016.
[33] 何庆林. 拓扑超导与马约拉纳费米子[J]. 科学通报, 2018, 63(26): 2717-2730.
[34] Joynt R, Taillefer L. The superconducting phases of UPt3[J]. Reviews of Modern Physics, 2002, 74(1): 235-294.
[35] Schoop L M, Xie L S, Ru C, et al. Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z2 topology for the superconductor[J]. Physical Review B, 2015, 91(21): 579–600.
[36] Xing Y, Wang H, Li C, et al. Superconductivity in topologically nontrivial material Au2Pb[J]. 2016.
[37] Yun W, Drachuck G, Wang L L, et al. Electronic structure of topological superconductor candidate Au2Pb[J]. 2018.
[38] Wang, Y S, J Y, et al. Fully gapped superconducting state in Au2Pb: A natural candidate for topological superconductor. EPL, 2016, 116(5/6).
[39] Xing Y, Shao Z, Ge J, et al. Surface Superconductivity in the type II Weyl Semimetal TaIrTe4[J]. 国家科学评论: 英文版, 2020, 7(3): 9.
[40] Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices[J]. Science, 2012, 336(TN.6084): 1003-1007.
[41] Rokhinson L P, Liu X, Furdyna J K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles[J]. Nature Physics.
[42] 王健, 刘超飞. 拓扑超导体和马约拉纳费米子[J]. 山东大学学报(理学版), 2016(9): 1-10.
[43] Wang M X, Liu C, Xu J P, et al. The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films[J]. Science, 2012, 336(6077): 52.
[44] Sun H H, Zhang K W, Hu L H, et al. Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor[J]. Physical Review Letters, 2016, 116(25): 257003-257003.
[45] Young S M, Zaheer S, Teo J C Y, et al. Dirac Semimetal in Three Dimensions[J]. Physical Review Letters, 2011, 108(14).
[46] Huang C, Zhou B T, Zhang H, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1): 2217.
[47] 顾开元, 罗天创, 葛军, 等. 拓扑材料中的超导[J]. 物理学报, 2020, 69(2): 19.
[48] Moon S J, Jin H, Kim K W, et al. Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in 5d Transition Metal Oxides Srn+1IrnO3n+1 (n=1, 2, and ∞)[J]. Physical Review Letters, 2008.
[49] 杜梅. 掺杂 SrIrO3 钙钛矿的结构分析和物性研究[D]. 哈尔滨工业大学, 2019.
[50] Zhang L, Pang B, Chen Y B, et al. Review of Spin–Orbit Coupled Semimetal SrIrO3 in Thin Film Form[J]. C R C Critical Reviews in Solid State Sciences.
[51] Groenendijk D J, Manca N, Mattoni G, et al. Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures[J]. Applied physics letters, 2016, 109(4): 041906-1-041906-4.
[52] Ohgushi K, Yagi T, Gotou H, et al. Metallization of quasi-two-dimensional Mott insulator CaIrO3 with S = 1/2 spins[J]. Physica B Condensed Matter, 2009, 404(19): 3261-3263.
[53] Biswas A, Jeong Y H. Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films[J]. Journal of Applied Physics, 2015, 117(19): 195305-.
[54] Kim B J, Jin H, Moon S J, et al. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4[J]. Physical review letters, 2008, 101(7): 076402.
[55] Kim B J, Ohsumi H, Komesu T, et al. Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4[J]. ence, 2009, 323(5919): 1329-1332.
[56] Hosub, Jin, Hogyun, et al. Anisotropic exchange interactions of spin-orbit-integrated states in Sr2IrO4[J]. Physical Review B, 2009.
[57] Watanabe H, Shirakawa T, Yunoki S. Microscopic Study of a Spin-Orbit-Induced Mott Insulator in Ir Oxides[J]. Physical Review Letters, 2010.
[58] Arita R, J Kuneš, Kozhevnikov A V, et al. Ab initio Studies on the Interplay between SpinOrbit Interaction and Coulomb Correlation in Sr2IrO4 and Ba2IrO4[J]. Physical Review Letters, 2012, 108(8):086403.
[59] Jorgensen J D, Beno M A, Hinks D G, et al. Oxygen ordering and the orthorhombic-totetragonal phase transition in[J]. Physical Review B, 1987, 36(7): 3608-3616.
[60] Capponi J J, Chaillout C, Hewat A W, et al. Structure of the 100 K Superconductor Ba2YCu3O7 between (5÷300)K by Neutron Powder Diffraction[J]. Epl, 1987, 3(12): 1301.
[61] Jorgensen J D, Veal B W, Paulikas A P, et al. Structural Properties of Oxygen-Deficient YBa2-Cu3O7-δ[J]. Physical review. B, Condensed matter, 1990, 41(4): 1863-1877.
[62] Cava R J, Hewat A W, Hewat E A, et al. Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox[J]. Physica C Superconductivity, 1990,165(5-6): 419-433.
[63] 李文敏. 新型铜基超导体及层状化合物的高压合成与物性研究[D]. 中国科学院大学(中国科学院物理研究所), 2018.
[64] Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides[J]. Nature, 2015, 518(7538): 179-86.
[65] KITAEV A. Fault-tolerant quantum computation by anyons[J]. Annals of Physics, 2003, 303(1): 2-30.
[66] 耿浩. MoTe2/Nb 约瑟夫森结低温输运性质的研究[D]. 哈尔滨工业大学, 2020.
[67] 杨先卫. 大学物理下[M]. 北京: 北京邮电大学出版社, 2017: 232-234.
[68] 王欢文, 王雪峰. 新型纳米结构材料的设计合成及其电容性能研究[M]. 上海: 同济大学出版社, 2018: 14-16.
[69] Franz M. Majorana's wires[J]. Nature Nanotechnology, 2013, 8(3): 149.
[70] Gazibegovic S, Car D, Hao Z, et al. Epitaxy of advanced nanowire quantum devices[J].Nature.
[71] Albrecht S M, Higginbotham A P, Madsen M, et al. Exponential protection of zero modes in Majorana islands[J]. Nature, 2016, 531(7593): 206.
[72] 张琨, 林罡, 刘刚, 等. 电子束光刻技术的原理及其在微纳加工与纳米器件制备中的应用[J]. 电子显微学报, 2006, 25(2): 7.
[73] Weng H M, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations[J]. J Phys Condens Matter, 2016, 28(30): 303001.
[74] Smith H M, Turner A F. Vacuum Deposited Thin Films Using a Ruby Laser[J]. Appl Opt,1965, 4(1): 147-148.
[75] D, Dijkkamp, T, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 1987, 51(8): 619-619.

所在学位评定分委会
物理系
国内图书分类号
O513
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336409
专题理学院_物理系
推荐引用方式
GB/T 7714
安全宁. CaIrO3/YBa2Cu3O7异质结的PLD生长及超导邻近效应研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032057-安全宁-物理系.pdf(6516KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[安全宁]的文章
百度学术
百度学术中相似的文章
[安全宁]的文章
必应学术
必应学术中相似的文章
[安全宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。