[1] AIELLO C D, CAPPELLARO P. Time-optimal control by a quantum actuator[J]. Physical Review A, 2015, 91(4): 042340.
[2] HODGES J S, YANG J C, RAMANATHAN C, et al. Universal control of nuclear spins via anisotropic hyperfine interactions[J]. Physical Review A, 2008, 78(1): 010303.
[3] HEGDE S S, ZHANG J, SUTER D. Efficient quantum gates for individual nuclear spin qubits by indirect control[J]. Physical Review Letters, 2020, 124(22).
[4] KHANEJA N. Switched control of electron nuclear spin systems[J]. Physical Review A, 2007, 76(3): 032326.
[5] HENSTRA A, DIRKSEN P, SCHMIDT J, et al. Nuclear spin orientation via electron spin locking (novel)[J]. Journal of Magnetic Resonance (1969), 1988, 77(2): 389-393.
[6] HENSTRA A, WENCKEBACH W T. The theory of nuclear orientation via electron spin locking (novel)[J]. Molecular Physics, 2008, 106(7): 859-871.
[7] LONDON P, SCHEUER J, CAI J M, et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin[J]. Physical review letters, 2013, 111(6): 067601.
[8] SCHWARTZ I, SCHEUER J, TRATZMILLER B, et al. Robust optical polarization of nuclear spin baths using hamiltonian engineering of nitrogen-vacancy center quantum dynamics[J]. Sci- ence advances, 2018, 4(8): eaat8978.
[9] HAAS H, PUZZUOLI D, ZHANG F, et al. Engineering effective hamiltonians[J]. New Journal of Physics, 2019, 21(10): 103011.
[10] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. [S.l.]: Ieee, 1994: 124-134.
[11] VANDERSYPEN L M, STEFFEN M, BREYTA G, et al. Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866): 883-887.
[12] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[13] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super- conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[14] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62- qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[15] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[16] BRADLEY C E, RANDALL J, ABOBEIH M H, et al. A ten-qubit solid-state spin register with quantum memory up to one minute[J]. Physical Review X, 2019, 9(3): 031045.
[17] ABOBEIH M, RANDALL J, BRADLEY C, et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor[J]. Nature, 2019, 576(7787): 411-415.
[18] PRESKILL J. Quantum computing in the nisq era and beyond[J]. Quantum, 2018, 2: 79.
[19] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical review A, 1995, 52(4): R2493.
[20] DYER H, RAAL F, DU PREEZ L, et al. Optical absorption features associated with paramag- netic nitrogen in diamond[J]. Philosophical Magazine, 1965, 11(112): 763-774.
[21] LOUBSER J, VAN WYK J. Electron spin resonance in the study of diamond[J]. Reports on Progress in Physics, 1978, 41(8): 1201.
[22] GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.
[23] BOURGEOIS E, JARMOLA A, SIYUSHEV P, et al. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond[J]. Nature Communications, 2015, 6(1): 1-8.
[24] CHILDRESS L, GURUDEV DUTT M, TAYLOR J, et al. Coherent dynamics of coupled elec- tron and nuclear spin qubits in diamond[J]. Science, 2006, 314(5797): 281-285.
[25] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.
[26] BALASUBRAMANIAN G, NEUMANN P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature materials, 2009, 8(5): 383-387.
[27] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.
[28] BALASUBRAMANIAN G, CHAN I, KOLESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.
[29] DEGEN C. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24): 243111.
[30] KUCSKO G, MAURER P C, YAO N Y, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.
[31] ASLAM N, PFENDER M, NEUMANN P, et al. Nanoscale nuclear magnetic resonance with chemical resolution[J]. Science, 2017, 357(6346): 67-71.
[32] WANG P, CHEN S, GUO M, et al. Nanoscale magnetic imaging of ferritins in a single cell[J]. Science advances, 2019, 5(4): eaau8038.
[33] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[34] ACÍN A, BLOCH I, BUHRMAN H, et al. The quantum technologies roadmap: a european community view[J]. New Journal of Physics, 2018, 20(8): 080201.
[35] MABUCHI H, KHANEJA N. Principles and applications of control in quantum systems[J]. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 2005, 15(15): 647-667.
[36] SHAPIRO M, BRUMER P. Quantum control of molecular processes[M]. [S.l.]: John Wiley & Sons, 2012.
[37] RABITZ H. The role of theory in the laboratory control of quantum dynamics phenomena[J]. Theoretical Chemistry Accounts, 2003, 109(2): 64-70.
[38] RABITZ H, DE VIVIE-RIEDLE R, MOTZKUS M, et al. Whither the future of controlling quantum phenomena?[J]. Science, 2000, 288(5467): 824-828.
[39] BONAČIĆ-KOUTECKỲ V, MITRIĆ R. Theoretical exploration of ultrafast dynamics in atomic clusters: Analysis and control[J]. Chemical reviews, 2005, 105(1): 11-66.
[40] WISEMAN H M, MILBURN G J. Quantum theory of optical feedback via homodyne detec- tion[J]. Physical Review Letters, 1993, 70(5): 548.
[41] VAN HANDEL R, STOCKTON J K, MABUCHI H. Modelling and feedback control design for quantum state preparation[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7 (10): S179.
[42] LLOYD S. Coherent quantum feedback[J]. Physical Review A, 2000, 62(2): 022108.
[43] HUANG G M, TARN T J, CLARK J W. On the controllability of quantum-mechanical sys- tems[J]. Journal of Mathematical Physics, 1983, 24(11): 2608-2618.
[44] RAMAKRISHNA V, SALAPAKA M V, DAHLEH M, et al. Controllability of molecular sys- tems[J]. Physical Review A, 1995, 51(2): 960.
[45] WU R B, TARN T J, LI C W. Smooth controllability of infinite-dimensional quantum- mechanical systems[J]. Physical Review A, 2006, 73(1): 012719.
[46] SCHIRMER S G, FU H, SOLOMON A I. Complete controllability of quantum systems[J]. Physical Review A, 2001, 63(6): 063410.
[47] ZHANG C B, DONG D Y, CHEN Z H. Control of non-controllable quantum systems: a quan- tum control algorithm based on grover iteration[J]. Journal of Optics B: Quantum and Semi- classical Optics, 2005, 7(10): S313.
[48] ALBERTINI F, D’ALESSANDRO D. Notions of controllability for bilinear multilevel quantum systems[J]. IEEE Transactions on Automatic Control, 2003, 48(8): 1399-1403.
[49] D’ALESSANDRO D. Introduction to quantum control and dynamics[M]. [S.l.]: Chapman and hall/CRC, 2021.
[50] TURINICI G, RABITZ H. Quantum wavefunction controllability[J]. Chemical Physics, 2001, 267(1-3): 1-9.
[51] TURINICI G, RABITZ H. Wavefunction controllability for finite-dimensional bilinear quantum systems[J]. Journal of Physics A: Mathematical and General, 2003, 36(10): 2565.
[52] WU R, PECHEN A, BRIF C, et al. Controllability of open quantum systems with kraus-map dynamics[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(21): 5681.
[53] ALTAFINI C. Controllability properties for finite dimensional quantum markovian master equa- tions[J]. Journal of Mathematical Physics, 2003, 44(6): 2357-2372.
[54] TANNOR D J, RICE S A. Control of selectivity of chemical reaction via control of wave packet evolution[J]. The Journal of chemical physics, 1985, 83(10): 5013-5018.
[55] SHI S, RABITZ H. Quantum mechanical optimal control of physical observables in microsys- tems[J]. The Journal of chemical physics, 1990, 92(1): 364-376.
[56] JAKUBETZ W, KADES E, MANZ J. State-selective excitation of molecules by means of op- timized ultrashort infrared laser pulses[J]. The Journal of Physical Chemistry, 1993, 97(48): 12609-12619.
[57] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms[J]. Journal of magnetic resonance, 2005, 172(2): 296-305.
[58] PEIRCE A P, DAHLEH M A, RABITZ H. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications[J]. Physical Review A, 1988, 37(12): 4950.
[59] MIRRAHIMI M, ROUCHON P, TURINICI G. Lyapunov control of bilinear schrödinger equa- tions[J]. Automatica, 2005, 41(11): 1987-1994.
[60] DONG D, PETERSEN I R. Variable structure control of uncontrollable quantum systems[J]. IFAC Proceedings Volumes, 2009, 42(6): 237-242.
[61] DONG D, PETERSEN I R. Controllability of quantum systems with switching control[J]. In- ternational Journal of Control, 2011, 84(1): 37-46.
[62] TICOZZI F, FERRANTE A. Dynamical decoupling in quantum control: A system theoretic approach[J]. Systems & control letters, 2006, 55(7): 578-584.
[63] YANG W, WANG Z Y, LIU R B. Preserving qubit coherence by dynamical decoupling[J]. Frontiers of Physics in China, 2011, 6(1): 2-14.
[64] ZHANG J, SUTER D. Experimental protection of two-qubit quantum gates against environ- mental noise by dynamical decoupling[J]. Physical review letters, 2015, 115(11): 110502.
[65] TABATABAEI S, HAAS H, ROSE W, et al. Numerical engineering of robust adiabatic opera- tions[J]. Physical Review Applied, 2021, 15(4): 044043.
[66] SCULLY M, ZUBAIRY M, et al. Quantum optics cambridge university press[J]. Cambridge, CB2 2RU, UK, 1997.
[67] THOMSEN L, MANCINI S, WISEMAN H M. Spin squeezing via quantum feedback[J]. Phys- ical Review A, 2002, 65(6): 061801.
[68] YAMAMOTO N, TSUMURA K, HARA S. Feedback control of quantum entanglement in a two-spin system[J]. Automatica, 2007, 43(6): 981-992.
[69] LIBERZON D. Calculus of variations and optimal control theory[M]. [S.l.]: Princeton univer- sity press, 2011.
[70] BRESSAN A, PICCOLI B. Introduction to the mathematical theory of control: volume 1[M]. [S.l.]: American institute of mathematical sciences Springfield, 2007.
[71] GLASER S J, BOSCAIN U, CALARCO T, et al. Training schrödinger’s cat: quantum optimal control[J]. The European Physical Journal D, 2015, 69(12): 1-24.
[72] BOSCAIN U, SIGALOTTI M, SUGNY D. Introduction to the pontryagin maximum principle for quantum optimal control[J]. PRX Quantum, 2021, 2(3): 030203.
[73] REMBOLD P, OSHNIK N, MÜLLER M M, et al. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond[J]. AVS Quantum Science, 2020, 2(2): 024701.
[74] MONTANGERO S, CALARCO T, FAZIO R. Robust optimal quantum gates for josephson charge qubits[J]. Physical review letters, 2007, 99(17): 170501.
[75] GOERZ M H, GUALDI G, REICH D M, et al. Optimizing for an arbitrary perfect entangler. ii. application[J]. Physical Review A, 2015, 91(6): 062307.
[76] PALAO J P, KOSLOFF R. Optimal control theory for unitary transformations[J]. Physical Review A, 2003, 68(6): 062308.
[77] CANEVA T, CALARCO T, MONTANGERO S. Chopped random-basis quantum optimiza- tion[J]. Physical Review A, 2011, 84(2): 022326.
[78] KOBZAR K, SKINNER T E, KHANEJA N, et al. Exploring the limits of broadband excitation and inversion: Ii. rf-power optimized pulses[J]. Journal of Magnetic Resonance, 2008, 194(1): 58-66.
[79] NÖBAUER T, ANGERER A, BARTELS B, et al. Smooth optimal quantum control for robust solid-state spin magnetometry[J]. Physical review letters, 2015, 115(19): 190801.
[80] SONG Y, LI J, HAI Y J, et al. Optimizing quantum control pulses with complex constraints and few variables through autodifferentiation[J]. Physical Review A, 2022, 105(1): 012616.
[81] GOODWIN D L. Advanced optimal control methods for spin systems[J]. arXiv preprint arXiv:1803.10432, 2018.
[82] SCHAEFER I, KOSLOFF R. Optimization of high-order harmonic generation by optimal con- trol theory: Ascending a functional landscape in extreme conditions[J]. Physical Review A, 2020, 101(2): 023407.
[83] OMRAN A, LEVINE H, KEESLING A, et al. Generation and manipulation of schrödinger cat states in rydberg atom arrays[J]. Science, 2019, 365(6453): 570-574.
[84] DAEMS D, RUSCHHAUPT A, SUGNY D, et al. Robust quantum control by a single-shot shaped pulse[J]. Physical Review Letters, 2013, 111(5): 050404.
[85] DRIDI G, LIU K, GUÉRIN S. Optimal robust quantum control by inverse geometric optimiza- tion[J]. Physical Review Letters, 2020, 125(25): 250403.
[86] BUTERAKOS D, SARMA S D, BARNES E. Geometrical formalism for dynamically corrected gates in multiqubit systems[J]. PRX Quantum, 2021, 2(1): 010341.
[87] BANDO M, ICHIKAWA T, KONDO Y, et al. Concatenated composite pulses compensating si- multaneous systematic errors[J]. Journal of the Physical Society of Japan, 2012, 82(1): 014004.
[88] VIOLA L, KNILL E, LLOYD S. Dynamical decoupling of open quantum systems[J]. Physical Review Letters, 1999, 82(12): 2417.
[89] KHODJASTEH K, LIDAR D A. Fault-tolerant quantum dynamical decoupling[J]. Physical review letters, 2005, 95(18): 180501.
[90] SOUZA A M, ÁLVAREZ G A, SUTER D. Robust dynamical decoupling[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1976): 4748-4769.
[91] BIERCUK M J, UYS H, VANDEVENDER A P, et al. Optimized dynamical decoupling in a model quantum memory[J]. Nature, 2009, 458(7241): 996-1000.
[92] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Review of scientific instruments, 1958, 29(8): 688-691.
[93] PAZ-SILVA G A, LEE S W, GREEN T J, et al. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory[J]. New Journal of Physics, 2016, 18 (7): 073020.
[94] GENOV G T, SCHRAFT D, VITANOV N V, et al. Arbitrarily accurate pulse sequences for robust dynamical decoupling[J]. Physical review letters, 2017, 118(13): 133202.
[95] GALI A, FYTA M, KAXIRAS E. Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors[J]. Physical Review B, 2008, 77(15): 155206.
[96] ACOSTA V, JARMOLA A, BAUCH E, et al. Optical properties of the nitrogen-vacancy singlet levels in diamond[J]. Physical Review B, 2010, 82(20): 201202.
[97] MANSON N, HARRISON J, SELLARS M. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics[J]. Physical Review B, 2006, 74(10): 104303.
[98] HARRISON J, SELLARS M, MANSON N. Optical spin polarisation of the nv centre in dia- mond[J]. Journal of luminescence, 2004, 107(1-4): 245-248.
[99] VAN DER SAR T, WANG Z, BLOK M, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register[J]. Nature, 2012, 484(7392): 82-86.
[100] STEINER M, NEUMANN P, BECK J, et al. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond[J]. Physical Review B, 2010, 81(3): 035205.
[101] JACQUES V, NEUMANN P, BECK J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature[J]. Physical review letters, 2009, 102(5): 057403.
[102] AJOY A, NAZARYAN R, DRUGA E, et al. Room temperature “optical nanodiamond hyper- polarizer”: Physics, design, and operation[J]. Review of Scientific Instruments, 2020, 91(2): 023106.
[103] LANG J, BROADWAY D, WHITE G, et al. Quantum bath control with nuclear spin state selectivity via pulse-adjusted dynamical decoupling[J]. Physical Review Letters, 2019, 123 (21): 210401.
[104] NEUMANN P, BECK J, STEINER M, et al. Single-shot readout of a single nuclear spin[J]. science, 2010, 329(5991): 542-544.
[105] TAMINIAU T H, WAGENAAR J J T, VAN DER SAR T, et al. Detection and control of in- dividual nuclear spins using a weakly coupled electron spin[J]. Physical Review Letters, 2012, 109(13): 137602.
[106] VAN LOAN C. Computing integrals involving the matrix exponential[J]. IEEE transactions on automatic control, 1978, 23(3): 395-404.
[107] CARBONELL F, JIMENEZ J, PEDROSO L. Computing multiple integrals involving matrix exponentials[J]. Journal of Computational and Applied Mathematics, 2008, 213(1): 300-305.
[108] RAO K R K, SUTER D. Characterization of hyperfine interaction between an nv electron spin and a first-shell c 13 nuclear spin in diamond[J]. Physical Review B, 2016, 94(6): 060101.
[109] JELEZKO F, GAEBEL T, POPA I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate[J]. Phys. Rev. Lett., 2004, 93: 130501.
[110] HODGES J S, YANG J C, RAMANATHAN C, et al. Universal control of nuclear spins via anisotropic hyperfine interactions[J]. Physical Review A, 2008, 78(1): 010303.
[111] FRYDMAN L, BLAZINA D. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions[J]. Nature physics, 2007, 3(6): 415-419.
[112] ARDENKJÆR-LARSEN J H, FRIDLUND B, GRAM A, et al. Increase in signal-to-noise ratio of> 10,000 times in liquid-state nmr[J]. Proceedings of the National Academy of Sciences, 2003, 100(18): 10158-10163.
[113] FERNANDEZ-ACEBAL P, ROSOLIO O, SCHEUER J, et al. Toward hyperpolarization of oil molecules via single nitrogen vacancy centers in diamond[J]. Nano letters, 2018, 18(3): 18821887.
[114] CHEN Q, SCHWARZ I, JELEZKO F, et al. Optical hyperpolarization of 13 𝑐 nuclear spins in nanodiamond ensembles[J]. Physical Review B, 2015, 92(18): 184420.
[115] CHEN Q, SCHWARZ I, JELEZKO F, et al. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures[J]. Physical Review B, 2016, 93(6): 060408.
[116] ABRAMS D, TRUSHEIM M E, ENGLUND D R, et al. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond[J]. Nano Letters, 2014, 14(5): 2471-2478.
[117] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[118] KING J P, JEONG K, VASSILIOU C C, et al. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond[J]. Nature communications, 2015, 6(1): 1-5.
[119] PARKER A J, JEONG K, AVALOS C E, et al. Optically pumped dynamic nuclear hyperpolarization in c 13-enriched diamond[J]. Physical Review B, 2019, 100(4): 041203.
[120] HARTMANN S, HAHN E. Nuclear double resonance in the rotating frame[J]. Physical Review, 1962, 128(5): 2042.
[121] ABRAGAM A, GOLDMAN M. Principles of dynamic nuclear polarisation[J]. Reports on Progress in Physics, 1978, 41(3): 395.
[122] CHEN Q, SCHWARZ I, JELEZKO F, et al. Optical hyperpolarization of c 13 nuclear spins in nanodiamond ensembles[J]. Physical Review B, 2015, 92(18): 184420.
[123] SCHEUER J, SCHWARTZ I, CHEN Q, et al. Optically induced dynamic nuclear spin polarisation in diamond[J]. New journal of Physics, 2016, 18(1): 013040.
[124] HENSTRA A, WENCKEBACH W T. Dynamic nuclear polarisation via the integrated solid effect i: theory[J]. Molecular Physics, 2014, 112(13): 1761-1772.
修改评论