中文版 | English
题名

金刚石氮-空位色心电子-核自旋体系的鲁棒量子优化控制研究

其他题名
ROBUST QUANTUM OPTIMAL CONTROL OFELECTRON-NUCLEAR SPIN SYSTEM INNITROGEN-VACANCY COLOR CENTERS INDIAMOND
姓名
姓名拼音
GE Yunrui
学号
11930013
学位类型
硕士
学位专业
070203 原子与分子物理
学科门类/专业学位类别
07 理学
导师
李俊
导师单位
量子科学与工程研究院
论文答辩日期
2022-05-09
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,量子科技因其重要而广泛的应用前景而受到人们极大的关注。金刚 石 NV 色心体系在室温下具有良好的物理性质和相干时间,这使它成为优秀的量 子信息物理载体之一。然而,想把基于 NV 色心体系的量子技术推向实际应用,还 存在一系列挑战。其中,如何在 NV 色心体系中实现高精度高鲁棒性的量子控制, 是实现其应用的关键。跟其它量子体系一样,作为真实的物理平台,各种噪声是无 法避免的,例如体系自身的自旋晶格弛豫、失谐、Rabi 误差、脉冲有限带宽引起 的误差等等。这给高精度的量子控制带来难题。想解决这些难题,除了硬件层面 上良好制备的样品和噪声尽可能低的实验平台外,操控层面基于量子控制论的理 论方法和优化技术来优化降低各种噪声的影响也是非常关键的。鲁棒性量子优化 控制作为一种实用的脉冲搜索理论,提供了一个在含有噪声时依然能保证脉冲性 能的方案。相比于其它传统的鲁棒性脉冲技术,它具有鲁棒性区域大而平滑,能 同时抵抗多种噪声等优势。本文中,我们详细介绍了量子优化控制的理论细节和 多个典型鲁棒性控制方法,以及 NV 色心体系的哈密顿量、操控、初始化与读取、 拓展性和退相干等基本知识。随后我们介绍了鲁棒性量子优化控制框架,并在单 比特的鲁棒性量子门问题上初步展示该方法的优势。最后我们将鲁棒性量子优化 控制应用到 NV 色心中的两个重要的控制问题:核自旋的间接控制和动态核极化, 分别提出了两者的鲁棒性优化方案。我们通过数值计算搜索了能同时抵抗 Rabi 误 差和失谐两种静态噪声的控制脉冲,并模拟了脉冲对噪声的抵抗性能。结果表明, 鲁棒性优化的间接控制和动态核极化相对于传统的组合脉冲方案拥有更好的鲁棒性。

其他摘要

Quantum science and technology have received significant attention for their essen- tial and widespread applications in recent years. Nitrogen-vacancy (NV) color centers in diamond possess excellent physical properties and long coherence time at room tempera- ture, thus constituting a unique system for experimental quantum research. However, it is challenging in bringing this system to practical applications. One important challenge is to achieve high accuracy quantum engineering of the NV color centers. In reality, there unavoidably exist various types of errors, such as spin-lattice relaxation, detuning effects, Rabi inaccuracy, pulse imperfection, etc. Apart from preparing good samples and lower- ing experimental noise level through hardware layer efforts, it is also crucial to develop roust quantum control methods and optimization techniques to reduce noise effects. Ro- bust quantum optimal control is such a pulse design and optimization framework which can be very effective in providing high robustness pulses. Compared to other conventional robust pulse techniques, it has the advantages of a large and smooth robustness region and the ability to resist multiple noise channels simultaneously. In this thesis, we first intro- duce quantum optimal control theory and several typical robust quantum control methods. then we introduce the basic knowledge of NV color center system, including Hamiltonian, manipulation, initialization and read out, expansibility and decoherence. Subsequently we introduce the robust quantum optimal control framework, and preliminarily show the ad- vantages of this method on the robust quantum control of single qubit.Finally, we apply robust quantum optimal control to two important and practical control problems in NV color center in diamond system:indirect control of nuclear spins and dynamic nuclear po- larization. We numerically search control pulses that can resist static Rabi imperfection and detuning noise and simulate their robustness performance. The results indicate that the robustness-optimized indirect control and dynamic nuclear polarization control sequence show better robustness than the conventional schemes such as those use composite pulses.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022
参考文献列表

[1] AIELLO C D, CAPPELLARO P. Time-optimal control by a quantum actuator[J]. Physical Review A, 2015, 91(4): 042340.
[2] HODGES J S, YANG J C, RAMANATHAN C, et al. Universal control of nuclear spins via anisotropic hyperfine interactions[J]. Physical Review A, 2008, 78(1): 010303.
[3] HEGDE S S, ZHANG J, SUTER D. Efficient quantum gates for individual nuclear spin qubits by indirect control[J]. Physical Review Letters, 2020, 124(22).
[4] KHANEJA N. Switched control of electron nuclear spin systems[J]. Physical Review A, 2007, 76(3): 032326.
[5] HENSTRA A, DIRKSEN P, SCHMIDT J, et al. Nuclear spin orientation via electron spin locking (novel)[J]. Journal of Magnetic Resonance (1969), 1988, 77(2): 389-393.
[6] HENSTRA A, WENCKEBACH W T. The theory of nuclear orientation via electron spin locking (novel)[J]. Molecular Physics, 2008, 106(7): 859-871.
[7] LONDON P, SCHEUER J, CAI J M, et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin[J]. Physical review letters, 2013, 111(6): 067601.
[8] SCHWARTZ I, SCHEUER J, TRATZMILLER B, et al. Robust optical polarization of nuclear spin baths using hamiltonian engineering of nitrogen-vacancy center quantum dynamics[J]. Sci- ence advances, 2018, 4(8): eaat8978.
[9] HAAS H, PUZZUOLI D, ZHANG F, et al. Engineering effective hamiltonians[J]. New Journal of Physics, 2019, 21(10): 103011.
[10] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. [S.l.]: Ieee, 1994: 124-134.
[11] VANDERSYPEN L M, STEFFEN M, BREYTA G, et al. Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866): 883-887.
[12] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[13] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super- conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[14] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62- qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[15] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[16] BRADLEY C E, RANDALL J, ABOBEIH M H, et al. A ten-qubit solid-state spin register with quantum memory up to one minute[J]. Physical Review X, 2019, 9(3): 031045.
[17] ABOBEIH M, RANDALL J, BRADLEY C, et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor[J]. Nature, 2019, 576(7787): 411-415.
[18] PRESKILL J. Quantum computing in the nisq era and beyond[J]. Quantum, 2018, 2: 79.
[19] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical review A, 1995, 52(4): R2493.
[20] DYER H, RAAL F, DU PREEZ L, et al. Optical absorption features associated with paramag- netic nitrogen in diamond[J]. Philosophical Magazine, 1965, 11(112): 763-774.
[21] LOUBSER J, VAN WYK J. Electron spin resonance in the study of diamond[J]. Reports on Progress in Physics, 1978, 41(8): 1201.
[22] GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.
[23] BOURGEOIS E, JARMOLA A, SIYUSHEV P, et al. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond[J]. Nature Communications, 2015, 6(1): 1-8.
[24] CHILDRESS L, GURUDEV DUTT M, TAYLOR J, et al. Coherent dynamics of coupled elec- tron and nuclear spin qubits in diamond[J]. Science, 2006, 314(5797): 281-285.
[25] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.
[26] BALASUBRAMANIAN G, NEUMANN P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature materials, 2009, 8(5): 383-387.
[27] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.
[28] BALASUBRAMANIAN G, CHAN I, KOLESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.
[29] DEGEN C. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24): 243111.
[30] KUCSKO G, MAURER P C, YAO N Y, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.
[31] ASLAM N, PFENDER M, NEUMANN P, et al. Nanoscale nuclear magnetic resonance with chemical resolution[J]. Science, 2017, 357(6346): 67-71.
[32] WANG P, CHEN S, GUO M, et al. Nanoscale magnetic imaging of ferritins in a single cell[J]. Science advances, 2019, 5(4): eaau8038.
[33] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[34] ACÍN A, BLOCH I, BUHRMAN H, et al. The quantum technologies roadmap: a european community view[J]. New Journal of Physics, 2018, 20(8): 080201.
[35] MABUCHI H, KHANEJA N. Principles and applications of control in quantum systems[J]. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 2005, 15(15): 647-667.
[36] SHAPIRO M, BRUMER P. Quantum control of molecular processes[M]. [S.l.]: John Wiley & Sons, 2012.
[37] RABITZ H. The role of theory in the laboratory control of quantum dynamics phenomena[J]. Theoretical Chemistry Accounts, 2003, 109(2): 64-70.
[38] RABITZ H, DE VIVIE-RIEDLE R, MOTZKUS M, et al. Whither the future of controlling quantum phenomena?[J]. Science, 2000, 288(5467): 824-828.
[39] BONAČIĆ-KOUTECKỲ V, MITRIĆ R. Theoretical exploration of ultrafast dynamics in atomic clusters: Analysis and control[J]. Chemical reviews, 2005, 105(1): 11-66.
[40] WISEMAN H M, MILBURN G J. Quantum theory of optical feedback via homodyne detec- tion[J]. Physical Review Letters, 1993, 70(5): 548.
[41] VAN HANDEL R, STOCKTON J K, MABUCHI H. Modelling and feedback control design for quantum state preparation[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7 (10): S179.
[42] LLOYD S. Coherent quantum feedback[J]. Physical Review A, 2000, 62(2): 022108.
[43] HUANG G M, TARN T J, CLARK J W. On the controllability of quantum-mechanical sys- tems[J]. Journal of Mathematical Physics, 1983, 24(11): 2608-2618.
[44] RAMAKRISHNA V, SALAPAKA M V, DAHLEH M, et al. Controllability of molecular sys- tems[J]. Physical Review A, 1995, 51(2): 960.
[45] WU R B, TARN T J, LI C W. Smooth controllability of infinite-dimensional quantum- mechanical systems[J]. Physical Review A, 2006, 73(1): 012719.
[46] SCHIRMER S G, FU H, SOLOMON A I. Complete controllability of quantum systems[J]. Physical Review A, 2001, 63(6): 063410.
[47] ZHANG C B, DONG D Y, CHEN Z H. Control of non-controllable quantum systems: a quan- tum control algorithm based on grover iteration[J]. Journal of Optics B: Quantum and Semi- classical Optics, 2005, 7(10): S313.
[48] ALBERTINI F, D’ALESSANDRO D. Notions of controllability for bilinear multilevel quantum systems[J]. IEEE Transactions on Automatic Control, 2003, 48(8): 1399-1403.
[49] D’ALESSANDRO D. Introduction to quantum control and dynamics[M]. [S.l.]: Chapman and hall/CRC, 2021.
[50] TURINICI G, RABITZ H. Quantum wavefunction controllability[J]. Chemical Physics, 2001, 267(1-3): 1-9.
[51] TURINICI G, RABITZ H. Wavefunction controllability for finite-dimensional bilinear quantum systems[J]. Journal of Physics A: Mathematical and General, 2003, 36(10): 2565.
[52] WU R, PECHEN A, BRIF C, et al. Controllability of open quantum systems with kraus-map dynamics[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(21): 5681.
[53] ALTAFINI C. Controllability properties for finite dimensional quantum markovian master equa- tions[J]. Journal of Mathematical Physics, 2003, 44(6): 2357-2372.
[54] TANNOR D J, RICE S A. Control of selectivity of chemical reaction via control of wave packet evolution[J]. The Journal of chemical physics, 1985, 83(10): 5013-5018.
[55] SHI S, RABITZ H. Quantum mechanical optimal control of physical observables in microsys- tems[J]. The Journal of chemical physics, 1990, 92(1): 364-376.
[56] JAKUBETZ W, KADES E, MANZ J. State-selective excitation of molecules by means of op- timized ultrashort infrared laser pulses[J]. The Journal of Physical Chemistry, 1993, 97(48): 12609-12619.
[57] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms[J]. Journal of magnetic resonance, 2005, 172(2): 296-305.
[58] PEIRCE A P, DAHLEH M A, RABITZ H. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications[J]. Physical Review A, 1988, 37(12): 4950.
[59] MIRRAHIMI M, ROUCHON P, TURINICI G. Lyapunov control of bilinear schrödinger equa- tions[J]. Automatica, 2005, 41(11): 1987-1994.
[60] DONG D, PETERSEN I R. Variable structure control of uncontrollable quantum systems[J]. IFAC Proceedings Volumes, 2009, 42(6): 237-242.
[61] DONG D, PETERSEN I R. Controllability of quantum systems with switching control[J]. In- ternational Journal of Control, 2011, 84(1): 37-46.
[62] TICOZZI F, FERRANTE A. Dynamical decoupling in quantum control: A system theoretic approach[J]. Systems & control letters, 2006, 55(7): 578-584.
[63] YANG W, WANG Z Y, LIU R B. Preserving qubit coherence by dynamical decoupling[J]. Frontiers of Physics in China, 2011, 6(1): 2-14.
[64] ZHANG J, SUTER D. Experimental protection of two-qubit quantum gates against environ- mental noise by dynamical decoupling[J]. Physical review letters, 2015, 115(11): 110502.
[65] TABATABAEI S, HAAS H, ROSE W, et al. Numerical engineering of robust adiabatic opera- tions[J]. Physical Review Applied, 2021, 15(4): 044043.
[66] SCULLY M, ZUBAIRY M, et al. Quantum optics cambridge university press[J]. Cambridge, CB2 2RU, UK, 1997.
[67] THOMSEN L, MANCINI S, WISEMAN H M. Spin squeezing via quantum feedback[J]. Phys- ical Review A, 2002, 65(6): 061801.
[68] YAMAMOTO N, TSUMURA K, HARA S. Feedback control of quantum entanglement in a two-spin system[J]. Automatica, 2007, 43(6): 981-992.
[69] LIBERZON D. Calculus of variations and optimal control theory[M]. [S.l.]: Princeton univer- sity press, 2011.
[70] BRESSAN A, PICCOLI B. Introduction to the mathematical theory of control: volume 1[M]. [S.l.]: American institute of mathematical sciences Springfield, 2007.
[71] GLASER S J, BOSCAIN U, CALARCO T, et al. Training schrödinger’s cat: quantum optimal control[J]. The European Physical Journal D, 2015, 69(12): 1-24.
[72] BOSCAIN U, SIGALOTTI M, SUGNY D. Introduction to the pontryagin maximum principle for quantum optimal control[J]. PRX Quantum, 2021, 2(3): 030203.
[73] REMBOLD P, OSHNIK N, MÜLLER M M, et al. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond[J]. AVS Quantum Science, 2020, 2(2): 024701.
[74] MONTANGERO S, CALARCO T, FAZIO R. Robust optimal quantum gates for josephson charge qubits[J]. Physical review letters, 2007, 99(17): 170501.
[75] GOERZ M H, GUALDI G, REICH D M, et al. Optimizing for an arbitrary perfect entangler. ii. application[J]. Physical Review A, 2015, 91(6): 062307.
[76] PALAO J P, KOSLOFF R. Optimal control theory for unitary transformations[J]. Physical Review A, 2003, 68(6): 062308.
[77] CANEVA T, CALARCO T, MONTANGERO S. Chopped random-basis quantum optimiza- tion[J]. Physical Review A, 2011, 84(2): 022326.
[78] KOBZAR K, SKINNER T E, KHANEJA N, et al. Exploring the limits of broadband excitation and inversion: Ii. rf-power optimized pulses[J]. Journal of Magnetic Resonance, 2008, 194(1): 58-66.
[79] NÖBAUER T, ANGERER A, BARTELS B, et al. Smooth optimal quantum control for robust solid-state spin magnetometry[J]. Physical review letters, 2015, 115(19): 190801.
[80] SONG Y, LI J, HAI Y J, et al. Optimizing quantum control pulses with complex constraints and few variables through autodifferentiation[J]. Physical Review A, 2022, 105(1): 012616.
[81] GOODWIN D L. Advanced optimal control methods for spin systems[J]. arXiv preprint arXiv:1803.10432, 2018.
[82] SCHAEFER I, KOSLOFF R. Optimization of high-order harmonic generation by optimal con- trol theory: Ascending a functional landscape in extreme conditions[J]. Physical Review A, 2020, 101(2): 023407.
[83] OMRAN A, LEVINE H, KEESLING A, et al. Generation and manipulation of schrödinger cat states in rydberg atom arrays[J]. Science, 2019, 365(6453): 570-574.
[84] DAEMS D, RUSCHHAUPT A, SUGNY D, et al. Robust quantum control by a single-shot shaped pulse[J]. Physical Review Letters, 2013, 111(5): 050404.
[85] DRIDI G, LIU K, GUÉRIN S. Optimal robust quantum control by inverse geometric optimiza- tion[J]. Physical Review Letters, 2020, 125(25): 250403.
[86] BUTERAKOS D, SARMA S D, BARNES E. Geometrical formalism for dynamically corrected gates in multiqubit systems[J]. PRX Quantum, 2021, 2(1): 010341.
[87] BANDO M, ICHIKAWA T, KONDO Y, et al. Concatenated composite pulses compensating si- multaneous systematic errors[J]. Journal of the Physical Society of Japan, 2012, 82(1): 014004.
[88] VIOLA L, KNILL E, LLOYD S. Dynamical decoupling of open quantum systems[J]. Physical Review Letters, 1999, 82(12): 2417.
[89] KHODJASTEH K, LIDAR D A. Fault-tolerant quantum dynamical decoupling[J]. Physical review letters, 2005, 95(18): 180501.
[90] SOUZA A M, ÁLVAREZ G A, SUTER D. Robust dynamical decoupling[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1976): 4748-4769.
[91] BIERCUK M J, UYS H, VANDEVENDER A P, et al. Optimized dynamical decoupling in a model quantum memory[J]. Nature, 2009, 458(7241): 996-1000.
[92] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Review of scientific instruments, 1958, 29(8): 688-691.
[93] PAZ-SILVA G A, LEE S W, GREEN T J, et al. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory[J]. New Journal of Physics, 2016, 18 (7): 073020.
[94] GENOV G T, SCHRAFT D, VITANOV N V, et al. Arbitrarily accurate pulse sequences for robust dynamical decoupling[J]. Physical review letters, 2017, 118(13): 133202.
[95] GALI A, FYTA M, KAXIRAS E. Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors[J]. Physical Review B, 2008, 77(15): 155206.
[96] ACOSTA V, JARMOLA A, BAUCH E, et al. Optical properties of the nitrogen-vacancy singlet levels in diamond[J]. Physical Review B, 2010, 82(20): 201202.
[97] MANSON N, HARRISON J, SELLARS M. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics[J]. Physical Review B, 2006, 74(10): 104303.
[98] HARRISON J, SELLARS M, MANSON N. Optical spin polarisation of the nv centre in dia- mond[J]. Journal of luminescence, 2004, 107(1-4): 245-248.
[99] VAN DER SAR T, WANG Z, BLOK M, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register[J]. Nature, 2012, 484(7392): 82-86.
[100] STEINER M, NEUMANN P, BECK J, et al. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond[J]. Physical Review B, 2010, 81(3): 035205.
[101] JACQUES V, NEUMANN P, BECK J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature[J]. Physical review letters, 2009, 102(5): 057403.
[102] AJOY A, NAZARYAN R, DRUGA E, et al. Room temperature “optical nanodiamond hyper- polarizer”: Physics, design, and operation[J]. Review of Scientific Instruments, 2020, 91(2): 023106.
[103] LANG J, BROADWAY D, WHITE G, et al. Quantum bath control with nuclear spin state selectivity via pulse-adjusted dynamical decoupling[J]. Physical Review Letters, 2019, 123 (21): 210401.
[104] NEUMANN P, BECK J, STEINER M, et al. Single-shot readout of a single nuclear spin[J]. science, 2010, 329(5991): 542-544.
[105] TAMINIAU T H, WAGENAAR J J T, VAN DER SAR T, et al. Detection and control of in- dividual nuclear spins using a weakly coupled electron spin[J]. Physical Review Letters, 2012, 109(13): 137602.
[106] VAN LOAN C. Computing integrals involving the matrix exponential[J]. IEEE transactions on automatic control, 1978, 23(3): 395-404.
[107] CARBONELL F, JIMENEZ J, PEDROSO L. Computing multiple integrals involving matrix exponentials[J]. Journal of Computational and Applied Mathematics, 2008, 213(1): 300-305.
[108] RAO K R K, SUTER D. Characterization of hyperfine interaction between an nv electron spin and a first-shell c 13 nuclear spin in diamond[J]. Physical Review B, 2016, 94(6): 060101.
[109] JELEZKO F, GAEBEL T, POPA I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate[J]. Phys. Rev. Lett., 2004, 93: 130501.
[110] HODGES J S, YANG J C, RAMANATHAN C, et al. Universal control of nuclear spins via anisotropic hyperfine interactions[J]. Physical Review A, 2008, 78(1): 010303.
[111] FRYDMAN L, BLAZINA D. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions[J]. Nature physics, 2007, 3(6): 415-419.
[112] ARDENKJÆR-LARSEN J H, FRIDLUND B, GRAM A, et al. Increase in signal-to-noise ratio of> 10,000 times in liquid-state nmr[J]. Proceedings of the National Academy of Sciences, 2003, 100(18): 10158-10163.
[113] FERNANDEZ-ACEBAL P, ROSOLIO O, SCHEUER J, et al. Toward hyperpolarization of oil molecules via single nitrogen vacancy centers in diamond[J]. Nano letters, 2018, 18(3): 18821887.
[114] CHEN Q, SCHWARZ I, JELEZKO F, et al. Optical hyperpolarization of 13 𝑐 nuclear spins in nanodiamond ensembles[J]. Physical Review B, 2015, 92(18): 184420.
[115] CHEN Q, SCHWARZ I, JELEZKO F, et al. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures[J]. Physical Review B, 2016, 93(6): 060408.
[116] ABRAMS D, TRUSHEIM M E, ENGLUND D R, et al. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond[J]. Nano Letters, 2014, 14(5): 2471-2478.
[117] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[118] KING J P, JEONG K, VASSILIOU C C, et al. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond[J]. Nature communications, 2015, 6(1): 1-5.
[119] PARKER A J, JEONG K, AVALOS C E, et al. Optically pumped dynamic nuclear hyperpolarization in c 13-enriched diamond[J]. Physical Review B, 2019, 100(4): 041203.
[120] HARTMANN S, HAHN E. Nuclear double resonance in the rotating frame[J]. Physical Review, 1962, 128(5): 2042.
[121] ABRAGAM A, GOLDMAN M. Principles of dynamic nuclear polarisation[J]. Reports on Progress in Physics, 1978, 41(3): 395.
[122] CHEN Q, SCHWARZ I, JELEZKO F, et al. Optical hyperpolarization of c 13 nuclear spins in nanodiamond ensembles[J]. Physical Review B, 2015, 92(18): 184420.
[123] SCHEUER J, SCHWARTZ I, CHEN Q, et al. Optically induced dynamic nuclear spin polarisation in diamond[J]. New journal of Physics, 2016, 18(1): 013040.
[124] HENSTRA A, WENCKEBACH W T. Dynamic nuclear polarisation via the integrated solid effect i: theory[J]. Molecular Physics, 2014, 112(13): 1761-1772.

所在学位评定分委会
量子科学与工程研究院
国内图书分类号
O411.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336410
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
葛云瑞. 金刚石氮-空位色心电子-核自旋体系的鲁棒量子优化控制研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930013-葛云瑞-量子科学与工程(3446KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[葛云瑞]的文章
百度学术
百度学术中相似的文章
[葛云瑞]的文章
必应学术
必应学术中相似的文章
[葛云瑞]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。