[1] HOU D, O’CONNOR D, IGALAVITHANA A D, et al. Metal contamination andbioremediation of agricultural soils for food safety and sustainability[J]. Nat . Rev.Earth and Environ., 2020, 1(7): 366-381.
[2] WANG J, HU Q, WANG X, et al. Protecting China’s soil by law[J]. Science, 2016,354(6312): 562.
[3] 全国土壤污染状况调查公报[J].环境教育,2014,06:8-10.
[4] HU B, SHAO S, NI H, et al. Current status, spatial features, health risks, andpotential driving factors of soil heavy metal pollution in China at province level[J].Environ. Pollut., 2020, 266: 114961.
[5] WU Q, HU W, WANG H, et al. Spatial distribution, ecological risk and sources ofheavy metals in soils from a typical economic development area, SoutheasternChina[J]. Sci. Total Environ., 2021, 780: 146557.
[6] ZOU Y, WANG X X, KHAN A, et al. Environmental remediation and application ofnanoscale zero-valent iron and its composites for the removal of heavy metal ions: Areview[J]. Environ. Sci. Technol., 2016, 50(14): 268-276.
[7] 徐阳.关注云南血铅村[J].绿色中国,2015:71-73.
[8] 王焰,钟宏,曹勇华,等.我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J].科学通报,2020,65(33):3825-3838.
[9] LI X, ZHANG J, MA J, et al. Status of chromium accumulation in agricultural soilsacross China (1989–2016)[J]. Chemosphere, 2020, 256: 127036.
[10] SHI T, ZHANG Y, GONG Y, et al. Status of cadmium accumulation in agriculturalsoils across China (1975–2016): From temporal and spatial variations to riskassessment[J]. Chemosphere, 2019, 230: 136-143.
[11] FU Y, LI F, GUO S, et al. Cadmium concentration and its typical input and outputfluxes in agricultural soil downstream of a heavy metal sewage irrigation area[J]. J .Hazard. Mater., 2021, 412: 125203.
[12] MEN C, LIU R, XU L, et al. Source-specific ecological risk analysis and criticalsource identification of heavy metals in road dust in Beijing, China[J]. J. Hazard.Mater., 2020, 388: 121763.
[13] FALAHI-ARDAKANI A. Contamination of environment with heavy metals emittedfrom automotives[J]. Ecotoxicol. Environ. Saf., 1984, 8: 152-161.
[14] HU B, SHAO S, NI H, et al. Assessment of potentially toxic element pollution insoils and related health risks in 271 cities across China[J]. Environ. Pollut., 2021,270: 116196.
[15] HE Z, ZHANG M, WILSON M J. Distribution and classification of red soils inChina[J]. Red Soils China, 2004: 29-33.
[16] ZHU Z, ZHU Z, ZHOU H, et al. Environmental problems of red soil along the coastof South China[J]. Soil Use Manag., 2006, 18: 39-44.
[17] LI Z, MA Z, VAN DER KUIJP T J, et al. A review of soil heavy metal pollutionfrom mines in China: Pollution and health risk assessment[J]. Sci. Total Environ.,2014, 468-469: 843-853.
[18] ZHUANG P, ZOU B, LI N Y, et al. Heavy metal contamination in soils and foodcrops around Dabaoshan mine in Guangdong, China: Implication for human health[J].Environ. Geochem. Health, 2009, 31(6): 707-715.
[19] YU Z, ZHOU L, HUANG Y, et al. Effects of a manganese oxide -modified biocharcomposite on adsorption of arsenic in red soil[J]. J . Environ. Manage., 2015, 163:155-162.
[20] DUAN Q, LEE J, LIU Y, et al. Distribution of heavy metal pollution in surface soilsamples in China: A graphical review[J]. Bull. Environ. Contam. Toxicol., 2016, 97:303-309.
[21] FENG X, QIU G. Mercury pollution in Guizhou, southwestern China-An overview[J].Sci. Total Environ., 2008, 400: 227-237.
[22] DUBEY S, SHRI M, GUPTA A, et al. Toxicity and detoxification of heavy metalsduring plant growth and metabolism[J]. Environ. Chem. Lett., 2018, 16: 1169-1192.
[23] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China: current status andmitigation strategies[J]. Environ. Sci. Technol., 2015, 49: 750-759.
[24] 国外工业公害[J].工业安全与环保,1972,02:40-49.
[25] MA L, SUN J, YANG Z, et al. Heavy metal contamination of agricultural soilsaffected by mining activities around the Ganxi River in Chenzhou, Southern Chin a[J].Environ. Monit. Assess., 2015, 187: 1-9.
[26] ZHUANG P, LI Z A, ZOU B, et al. Heavy metal contamination in soil and soybeannear the dabaoshan mine, south China[J]. Pedosphere, 2013, 23(3): 298-304.
[27] JIANG C, JUN Z, GAO L. Sources and ecological risk assessment of heavymetal(loid)s in agricultural soils of Huzhou, China[J]. Soil Sediment Contam., 2015,24(4): 437-453.
[28] GONG X, HUANG D, LIU Y, et al. Stabilized nanoscale zerovalent iron mediatedcadmium accumulation and oxidative damage of boehmeria nivea (L.) gaudichcultivated in cadmium contaminated sediments[J]. Environ. Sci. Technol., 2017,51(19): 11308-11316.
[29] CHEN X, LI X, XU D, et al. Application of nanoscale zero-valent iron in hexavalentchromium-contaminated soil: A review[J]. Nanotechnol. Rev., 2020, 9(1): 736-750.
[30] GE Q, FENG X, WANG R, et al. Mixed redox-couple-involved chalcopyrite phaseCuFeS2 quantum dots for highly efficient Cr(VI) removal[J]. Environ. Sci. Technol.,2020, 54: 8022-8031.
[31] YANG D, CHU Z, ZHENG R, et al. Remediation of Cu-polluted soil with analcimesynthesized from engineering abandoned soils through green chemistryapproaches[J]. J. Hazard. Mater., 2020, 406: 124673.
[32] QIU W, ZHENG Y. Removal of lead, copper, nickel, cobalt, and zinc from water bya cancrinite-type zeolite synthesized from fly ash[J]. Chem. Eng. J., 2009, 145(3):483-488.
[33] AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal pollutedenvironments: A review of microbial biosorbents[J]. Int . J. Environ. Res. PublicHealth, 2017, 14(1): 94.
[34] CHAISENA A, RANGSRIWATANANON K. Synthesis of sodium zeolites fromnatural and modified diatomite[J]. Mater . Lett., 2005, 59: 1474-1479.
[35] DUSSELIER M, DAVIS M E. Small -pore zeolites: Synthesis and catalysis[J]. Chem.Rev., 2018, 118(11): 5265-5329.
[36] FLANIGEN E M,Broach R W, Wilson S T. Introduction. In: Kulprathipanja S (ed)Zeolites in industrial separation and catalysis, 1st edn[M]. Weinheim: Wiley-VCH,2010: 1–26.
[37] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates andaluminates.[J]. Am. Mineral., 1954, 39(1-2): 92-96.
[38] COLLINS F, ROZHKOVSKAYA A, OUTRAM J G, et al. A critical review of wasteresources, synthesis, and applications for Zeolite LTA[J]. Microporous MesoporousMater., 2020, 291: 109667.
[39] 徐如人,庞文琴,霍启升,等.分子筛与多孔材料化学[M].北京:科学出版社,2015.
[40] SMITH J V. Topochemistry of Zeolites and Related Materials. 1. Topology andGeometry[J]. Chem. Rev., 1988, 88(1): 149-182.
[41] N M W. Monograph on “molecular sieves”[M]. London: Society of chemicalindustry, 1968.
[42] KNIGHT C T G. Are zeolite secondary building units really red herrings?[J].Zeolites, 1990, 10(2): 140-144.
[43] KASNERYK V, SHAMZHY M, ZHOU J, et al. Vapour -phase-transportrearrangement technique for the synthesis of new zeolites[J]. Nat. Commun., 2019,10(1): 1-8.
[44] MA Y, HAN S, WU Q, et al. One-pot fabrication of metal-zeolite catalysts from acombination of solvent-free and sodium-free routes[J]. Catal. Today, 2021, 371: 64-68.
[45] LIU Y, HAN S, GUAN D, et al. Rapid green synthesis of ZSM-5 zeolite fromleached illite clay[J]. Microporous Mesoporous Mater ., 2019, 280: 324-330.
[46] MAIA A Á B, NEVES R F, ANGÉLICA Rô S, et al. Synthesis, optimisation andcharacterisation of the zeolite NaA using kaolin waste from the Amazon Region.Production of zeolites KA, MgA and CaA[J]. Appl . Clay Sci., 2015, 108: 55-60.
[47] MENG Q, CHEN H, LIN J, et al. Zeolite A synthesized from alkaline assisted pre -activated halloysite for efficient heavy metal removal in polluted river water a ndindustrial wastewater[J]. J. Environ. Sci. (China), 2017, 56: 254-262.
[48] XIE W M, ZHOU F P, BI X L, et al. Accelerated crystallization of magnetic 4Azeolitesynthesized from red mud for application in removal of mixed heavy metalions[J]. J. Hazard. Mater., 2018, 358: 441-449.
[49] BELVISO C, CAVALCANTE F, FIORE S. Synthesis of zeolite from Italian coal flyash: Differences in crystallization temperature using seawater instead of distilledwater[J]. Waste Manag., 2010, 30(5): 839-847.
[50] GARCIA G, CARDENAS E, CABRERA S, et al. Synthesis of zeolite Y fromdiatomite as silica source[J]. Microporous Mesoporous Mater ., 2016, 219: 29-37.
[51] KIM D J, CHUNG H S. Synthesis and characterization of ZSM-5 zeolite fromserpentine[J]. Appl. Clay Sci., 2003, 24(1-2): 69-77.
[52] CHAVES LIMA R, BIESEKI L, VINACHES MELGUIZO P, et al. Environmentallyfriendly zeolites: Synthesis and source materials[M]. Cham: Springer InternationalPublishing, 2019.
[53] JOHNSON E B G, ARSHAD S E. Hydrothermally synthesized zeoli tes based onkaolinite: A review[J]. Appl. Clay Sci., 2014, 97-98: 215-221.
[54] YU J. Chapter 3: Synthesis of zeolites. [J]. Stud. Surf. Sci. Catal., 2007, 168: 39 -103.
[55] SZOSTAK R. Molecular Sieves: Principles of synthesis and identification[M]. NewYork: Van Nostrand Reunbold, 1989.
[56] CABALLERO I, COLINA F G, COSTA J. Synthesis of X-type zeolite fromdealuminated kaolin by reaction with sulfuric acid at high temperature[J]. Ind . Eng.Chem. Res., 2007, 46(4): 1029-1038.
[57] MALDONADO M, OLEKSIAK M D, CHINTA S, et al. Controlling crystalpolymorphism in organic-free synthesis of Na-zeolites[J]. J. Am. Chem. Soc., 2013,135(7): 2641-2652.
[58] AYELE L, PÉREZ-PARIENTE J, CHEBUDE Y, et al. Synthesis of zeolite A fromEthiopian kaolin[J]. Microporous Mesoporous Mater., 2015, 215: 29-36.
[59] 孙晓勃,杜艳泽,秦波,等.“蒸汽相转化”法制备纳米多级Beta沸石催化材料[J].无机材料学报,2018,33(1):27-34.
[60] CONATO M T, OLEKSIAK M D, PETER MCGRAIL B, et al. Frameworkstabilization of Si-rich LTA zeolite prepared in organic-free media[J]. Chem.Commun., 2015, 51(2): 269-272.
[61] ZHANG H, ZHANG H, WANG P, et al. Organic template-free synthesis of zeolitemordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Adv., 2016,6(53): 47623-47631.
[62] PARK S H, YANG J K, KIM J H, et al. Eco-friendly synthesis of zeolite A fromsynthesis cakes prepared by removing the liquid phase of aged synthesis mixtures[J].Green Chem., 2015, 17(6): 3571-3578.
[63] LECHERT H. The pH-value and its importance for the crystallization of zeolites[J].Microporous Mesoporous Mater., 1998, 22(4-6): 519-523.
[64] CAPUTO D, DE GENNARO B, LIGUORI B, et al. A Preliminary investigation onkinetics of zeolite A crystallization using optical diagnostics[J]. Mater . Chem. Phys.,2000, 66(2): 120-125.
[65] OSACKÝ M, PÁLKOVÁ H, HUDEC P, et al. Effect of alkaline synthesis conditionson mineralogy, chemistry and surface properties of phillipsite, P and X zeoliticmaterials prepared from fine powdered perlite by-product[J]. MicroporousMesoporous Mater., 2020, 294: 20-23.
[66] CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: Precursors,intermediates and reaction mechanism[J]. Microporous Mesoporous Mater ., 2005,82(1-2): 1-78.
[67] GRAND J, AWALA H, MINTOVA S. Mechanism of zeolites crystal growth: Newfindings and open questions[J]. CrystEngComm, 2016, 18(5): 650-664.
[68] SOLANS-MONFORT X, BERTRAN J, BRANCHADELL V, et al. Keto-enolisomerization of acetaldehyde in HZSM5. A theoretical study using the ONIOM2method[J]. J. Phys. Chem. B, 2002, 106(39): 10220-10226.
[69] GAO J, FREINDORF M. Hybrid ab initio QM/MM simulation of N-methylacetamidein aqueous solution[J]. J. Phys. Chem. A, 1997, 101: 3182-3188.
[70] CHU C H, LEUNG C W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136:B864-871.
[71] KOHN W, L.J.SHAM. Self-consistent equations including exchange and correlationeffects[J]. Phys. Rev., 1965, 140: A1133-1138.
[72] ZHENG R, FENG X, ZOU W, et al. Converting loess into zeolite for heavy metalpolluted soil remediation based on “soil for soil -remediation” strategy[J]. J. Hazard.Mater., 2021, 412: 125199.
[73] SELLAOUI L, HESSOU E P, BADAWI M, et al. Trapping of Ag+, Cu2+, and Co2+ byfaujasite zeolite Y: New interpretations of the adsorption mechanism via DFT andstatistical modeling investigation[J]. Chem. Eng. J., 2021, 420: 127712.
[74] MISAELIDES P. Application of natural zeolites in environmental remediation: Ashort review[J]. Microporous Mesoporous Mater ., 2011, 144(1-3): 15-18.
[75] DANG V M, VAN H T, VINH N D, et al. Enhancement of exchangeable Cd an d Pbimmobilization in contaminated soil using Mg/Al LDH-zeolite as an effectiveadsorbent[J]. RSC Adv., 2021, 11(28): 17007-17019.
[76] CASTALDI P, SANTONA L, MELIS P. Heavy metal immobilization by chemicalamendments in a polluted soil and influence on white lupin growth[J]. Chemosphere,2005, 60(3): 365-371.
[77] TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on productionof biochar from biomass waste through pyrolysis: A review[J]. Renew. Sustain.Energy Rev., 2016, 55: 467-481.
[78] MULLEN C A, BOATENG A A, GOLDBERG N M, et al. Bio-oil and bio-charproduction from corn cobs and stover by fast pyrolysis[J]. Biomass Bioenergy, 2010,34(1): 67-74.
[79] MOHAN D, PITTMAN C U, PHILIP S. Pyrolysis of wood/biomass for bio-oil: Acritical review dinesh[J]. Energ. Fuel. 2006, 20: 848-889.
[80] CAO X, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs leadand atrazine[J]. Environ. Sci. Technol., 2009, 43(9): 3285-3291.
[81] BASHIR S, ZHU J, FU Q, et al. Cadmium mobility, uptake and anti-oxidativeresponse of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite androck phosphate as amendments[J]. Chemosphere, 2018, 194: 579-587.
[82] JIANG J, XU R kou, JIANG T yu, et al. Immobilization of Cu(II), Pb(II) and Cd(II)by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. J .Hazard. Mater., 2012, 229-230: 145-150.
[83] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions fromaqueous solutions by biochars derived from potassium-rich biomass[J]. J. Clean.Prod., 2018, 180: 437-449.
[84] KOŁODYŃSKA D, KRUKOWSKA J, THOMAS P. Comparison of sorption anddesorption studies of heavy metal ions from biochar and commercial active carbon[J].Chem. Eng. J., 2017, 307: 353-363.
[85] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced fromcrop residues at different temperatures[J]. Bioresour . Technol., 2011, 102(3): 3488-3497.
[86] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent forcontaminant management in soil and water: A review[J]. Chemosphere, 2014, 99:19-33.
[87] AKHIL D, LAKSHMI D, KARTIK A, et al. Production, characterization, activationand environmental applications of engineered biochar: A review[J]. Environ. Chem.Lett., 2021, 19(3): 2261-2297.
[88] YUAN T, HE W, YIN G, et al. Comparison of bio-chars formation derived from fastand slow pyrolysis of walnut shell[J]. Fuel, 2020, 261: 116450.
[89] ANTUNES E, JACOB M V., BRODIE G, et al. Silver removal from aqueous solutionby biochar produced from biosolids via microwave pyrolysis[J]. J. Environ. Manage.,2017, 203: 264-272.
[90] XU H J, WANG X H, LI H, et al. Biochar impacts soil microbial communitycomposition and nitrogen cycling in an acidic soil planted with rape[J]. Environ . Sci.Technol., 2014, 48: 9391-9399.
[91] CAO X, MA L, LIANG Y, et al. Simultaneous immobilization of lead and atrazine incontaminated soils using dairy-manure biochar.[J]. Environ. Sci. Technol., 2011, 45:4884-4889.
[92] GUNARATHNE V, ASHIQ A, RAMANAYAKA S, et al. Biochar from municipalsolid waste for resource recovery and pollution remediation[J]. Environ . Chem. Lett.,2019, 17: 1225-1235.
[93] LEI S, SHI Y, QIU Y, et al. Performance and mechanisms of emerging animal -derived biochars for immobilization of heavy metals[J]. Sci. Total Environ., 2019,646: 1281-1289.
[94] ALLISON S D, MARTINY J B H. Resistance, resilience, and redundancy inmicrobial communities[J]. Proc. Natl. Acad. Sci., 2009, 2: 149-166.
[95] FISCHER B M C, MANZONI S, MORILLAS L, et al. Improving agricultu ral wateruse efficiency with biochar–A synthesis of biochar effects on water storage andfluxes across scales[J]. Sci. Total Environ., 2019, 657: 853-862.
[96] MEIER S, CURAQUEO G, KHAN N, et al. Chicken-manure-derived biocharreduced bioavailability of copper in a contaminated soil[J]. J. Soils Sediments, 2017,17(3): 741-750.
[97] YAO Q, LIU J, YU Z, et al. Three years of biochar amendment alters soilphysiochemical properties and fungal community composition in a black soil ofnortheast China[J]. Soil Biol. Biochem., 2017, 110: 56-67.
[98] SHAABAN M, VAN ZWIETEN L, BASHIR S, et al. A concise review of biocharapplication to agricultural soils to improve soil conditions and fight pollution[J]. J .Environ. Manage., 2018, 228: 429-440.
[99] TAN Z, YUAN S, HONG M, et al. Mechanism of negative surface charge formationon biochar and its effect on the fixation of soil Cd[J]. J . Hazard. Mater., 2020, 384:121370.
[100] 杨于兴,漆睿.X射线衍射分析[M].上海:上海交通大学出版社,1989.
[101] Leng Y. Materials Characterization: Introduction to Microscopic andSpectroscopic Methods[M]. 2009.
[102] EMMETT P H, DEWITT T W. The low temperature adsorption of nitrogen,oxygen, argon, hydrogen, n-butane and carbon dioxide on porous glass and onpartially dehydrated chabazite[J]. J. Am. Chem. Soc., 1943, 65(7): 1253-1262.
[103] GOLDSTEIN J I, YAKOWITZ H. Practical scanning electron microscopy[M].New York:Plenum Press, 1977.
[104] SMITH B C. Fundamentals of fourier transform infrared spectroscopy[M]. BocaRaton: CRC Press, 1996.
[105] JENKINS R. X-ray fluorescence spectrometry, 2nd edition[M]. New York: JohnWiley&Sons, 1999.
[106] BAGUS P S, ILTON E S, NELIN C J. The interpretation of XPS spectra:Insights into materials properties[J]. Surf . Sci. Rep., 2013, 68(2): 273-304.
[107] SPENCE J C H. Experimental high-resolution electron microscopy, 2ndedition[M]. Oxford: Oxford University Express, 1988.
[108] UHLEMANN S, HAIDER M. Residual wave aberrations in the first sphericalaberration corrected transmission electron microscope[J]. Ultramicroscopy, 1998, 72:109-119.
[109] RODRIGUES M, SOUZA A, SANTOS I. Brazilian kaolin wastes: Synthesis ofzeolite P at low-temperature[J]. Am. Chem. Sci. J., 2016, 12(4): 1-11.
[110] LI Q. Red Soils of China[M]. Beijing: Science Press, 1983.
[111] SATHUPUNYA M, GULARI E, WONGKASEMJIT S. ANA and GIS zeolitesynthesis directly from alumatrane and silatrane by sol -gel process and microwavetechnique[J]. J. Eur. Ceram. Soc., 2002, 22(13): 2305-2314.
[112] LTAIEF O O, SIFFERT S, FOURMENTIN S, et al. Synthesis of Faujasite typezeolite from low grade Tunisian clay for the removal of heavy metals from aqueouswaste by batch process: Kinetic and equilibrium study[J]. Comptes Rendus Chim.,2015, 18(10): 1123-1133.
[113] PECHAR F. An X-ray diffraction refinement of the crystal structure of naturalorthorhombic analcime (NaAlSi2O6·H2O)[J]. Zeolites, 1988, 8: 247-249.
[114] ALKAN M, HOPA Ç, YILMAZ Z, et al. The effect of alkali concentration andsolid/liquid ratio on the hydrothermal synthesis of zeolite NaA from naturalkaolinite[J]. Microporous Mesoporous Mater., 2005, 86: 176-184.
[115] HANSEN S, FÄLTH L. X-ray study of the nepheline hydrate I structure[J].Zeolites, 1982, 2: 162-166.
[116] ZHANG M K, XU J M. Restoration of surface soil fertility of an eroded red soilin southern China[J]. Soil Tillage Res., 2005, 80: 13-21.
[117] http://www.fao.org/3/cb4894en/online/cb4894en.html
[118] QIN X, LIU Y, HUANG Q, et al. In-Situ remediation of cadmium and atrazinecontaminated acid red soil of south China using sepiolite and biochar[J]. Bull.Environ. Contam. Toxicol., 2019, 102(1): 128-133.
[119] HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH,and water management for simultaneously minimizing arsenic and cadmiumconcentrations in rice grains[J]. Environ. Sci. Technol., 2016, 50: 4178-4185.
[120] LEE D S, LIM S S, PARK H J, et al. Fly ash and zeolite decrease metal uptakebut do not improve rice growth in paddy soils contaminated with Cu and Zn[J].Environ. Int., 2019, 129: 551-564.
[121] XIAO J, ZHOU S, CHU L, et al. Electrokinetic remediation of uranium(VI) -contaminated red soil using composite electrolyte of citric acid and ferric chloride[J].Environ. Sci. Pollut. Res., 2020, 27: 4478-4488.
[122] ZHOU D mei, DENG C fen, CANG L. Electrokinetic remediation of a Cucontaminated red soil by conditioning catholyte pH with different enhancingchemical reagents[J]. Chemosphere, 2004, 56: 265-273.
[123] HONG M, YU L, WANG Y, et al. Heavy metal adsorption with zeolites: Therole of hierarchical pore architecture[J]. Chem. Eng. J., 2019, 359: 363-372.
[124] ZOU W, FENG X, WEI W, et al. Converting spent LiFePO4 battery into zeoliticphosphate for highly efficient heavy metal adsorption[J]. Inorg. Chem., 2021, 60:9496-9503.
[125] LI Z, LU W, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: Newfindings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueoussolution and soil[J]. J. Hazard. Mater., 2017, 344: 1-11.
[126] KHAN S, CHAO C, WAQAS M, et al. Sewage sludge biochar influence uponrice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissionsfrom acidic paddy soil[J]. Environ. Sci. Technol., 2013, 47(15): 8624-8632.
[127] WANG L, O’CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms,physicochemical changes, assessment, and implications for field applications[J].Environ. Sci. Technol., 2020, 54: 14797-14814.
[128] SHNEOUR E A. Oxidation of graphitic carbon in certain soils[J]. Science, 1966,151: 991-992.
[129] GUO J, CHEN B. Insights on the molecular mechanism for the recalcitrance ofbiochars: Interactive effects of carbon and silicon components [J]. Environ. Sci.Technol., 2014, 48: 9103-9112.
[130] CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to itspotential use in remediation[J]. Bioresour. Technol., 2010, 101: 5222-5228.
[131] MIA S, DIJKSTRA F A, SINGH B. Aging induced changes in biochar’sfunctionality and adsorption behavior for phosphate and ammonium[J]. Environ. Sci.Technol., 2017, 51: 8359-8367.
[132] WANG Y, ZHANG W, SHANG J, et al. Chemical aging changed aggregationkinetics and transport of biochar colloids[J]. Environ. Sci. Technol., 2019, 53: 8136-8146.
[133] CHENG S. Effects of heavy metals on plants and resistance mechanisms[J].Environ. Sci. Pollut. Res., 2003, 10(4): 256-264.
[134] BASHIR S, SHAABAN M, MEHMOOD S, et al. Efficiency of C3 and C4 plantderived-biochar for Cd mobility, nutrient cycling and microbial biomass incontaminated soil[J]. Bull. Environ. Contam. Toxicol., 2018, 100(6): 834-838.
[135] WANG A S, ANGLE J S, CHANEY R L, et al. Soil pH effects on uptake of Cdand Zn by thlaspi caerulescens[J]. Plant Soil, 2006, 281(1-2): 325-337.
[136] ROUPHAEL Y, REA E, CARDARELLI M, et al. Can adverse effects of acidityand aluminum toxicity be alleviated by appropriate rootstock selection incucumber?[J]. Fron. Plant Sci., 2016, 7: 1-12.
[137] ZHOU Z, DAI C, ZHOU X, et al. The removal of antimony by novel NZVI -zeolite: The role of iron transformation[J]. Water . Air. Soil Pollut., 2015, 226: 76.
[138] KIM J H, KIM S H, KIM H K, et al. Synthesis and characterization ofhydroxyapatite crystals: A review study on the analytical methods[J]. J. Biomed.Mater. Res., 2002, 62: 600-612.
修改评论