[1] KALMAN, EMIL R. Contributions to the theory of optimal control[J]. Bol. soc. mat. mexicana,1960, 5(2): 102-119.
[2] KUSHNER H. Optimal stochastic control[J/OL]. IRE Transactions on Automatic Control,1962, 7(5): 120-122. DOI: 10.1109/TAC.1962.1105490.
[3] WONHAM W M. On a matrix riccati equation of stochastic control[J]. SIAM Journal on Control, 1968, 6(4): 681-697.
[4] YONG J. Linear-quadratic optimal control problems for mean-field stochastic differential equations[J]. SIAM journal on Control and Optimization, 2013, 51(4): 2809-2838.
[5] BISMUT J M. Linear quadratic optimal stochastic control with random coefficients[J]. SIAM Journal on Control and Optimization, 1976, 14(3): 419-444.
[6] BISMUT J M. Intégrales convexes et probabilités[J]. Journal of Mathematical Analysis and Applications, 1973, 42(3): 639-673.
[7] BISMUT J M. Théorie probabiliste du contrôle des diffusions: volume 167[M]. American Mathematical Soc., 1976.
[8] BISMUT J M. An introductory approach to duality in optimal stochastic control[J]. SIAM review, 1978, 20(1): 62-78.
[9] PENG S. A general stochastic maximum principle for optimal control problems[J]. SIAM Journal on control and optimization, 1990, 28(4): 966-979.
[10] CHEN S, LI X, ZHOU X Y. Stochastic linear quadratic regulators with indefinite control weight costs[J]. SIAM Journal on Control and Optimization, 1998, 36(5): 1685-1702.
[11] CHEN S, ZHOU X Y. Stochastic linear quadratic regulators with indefinite control weight costs. ii[J]. SIAM Journal on Control and Optimization, 2000, 39(4): 1065-1081.
[12] RAMI M A, MOORE J B, ZHOU X Y. Indefinite stochastic linear quadratic control and generalized differential riccati equation[J]. SIAM Journal on Control and Optimization, 2002, 40 (4): 1296-1311.
[13] YONG J, ZHOU X Y. Stochastic controls: Hamiltonian systems and hjb equations: volume 43 [M]. Springer Science & Business Media, 1999.
[14] CHEN S, YONG J. Stochastic linear quadratic optimal control problems[J]. Applied Mathematics and Optimization, 2001, 43(1): 21-45.
[15] ZHOU X Y, LI D. Continuous-time mean-variance portfolio selection: A stochastic lq framework[J]. Applied Mathematics and Optimization, 2000, 42(1): 19-33.
[16] SUN J, YONG J. Linear quadratic stochastic differential games: open-loop and closed-loop saddle points[J]. SIAM Journal on Control and Optimization, 2014, 52(6): 4082-4121.
[17] KAC M. Foundations of kinetic theory[C]//Proceedings of The third Berkeley symposium on mathematical statistics and probability: volume 3. 1956: 171-197.
[18] ANDERSSON D, DJEHICHE B. A maximum principle for sdes of mean-field type[J]. Applied Mathematics & Optimization, 2011, 63(3): 341-356.
[19] BUCKDAHN R, DJEHICHE B, LI J. A general stochastic maximum principle for sdes of mean-field type[J]. Applied Mathematics & Optimization, 2011, 64(2): 197-216.
[20] LI X, SUN J, YONG J. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability[J]. Probability, Uncertainty and Quantitative Risk, 2016, 1(1): 1-24.
[21] SUN J. Mean-field stochastic linear quadratic optimal control problems: Open-loop solvabilities [J]. ESAIM: Control, Optimisation and Calculus of Variations, 2017, 23(3): 1099-1127.
[22] YONG J. Linear-quadratic optimal control problems for mean-field stochastic differential equations—time-consistent solutions[J]. Transactions of the American Mathematical Society, 2017, 369(8): 5467-5523.
[23] LI X, SUN J, XIONG J. Linear quadratic optimal control problems for mean-field backward stochastic differential equations[J]. Applied Mathematics & Optimization, 2019, 80(1): 223-250.
[24] AHMED N. Nonlinear diffusion governed by mckean–vlasov equation on hilbert space and optimal control[J]. SIAM journal on control and optimization, 2007, 46(1): 356-378.
[25] BJORK T, MURGOCI A. A general theory of markovian time inconsistent stochastic control problems[J]. Available at SSRN 1694759, 2010.
[26] MEYER-BRANDIS T, ØKSENDAL B, ZHOU X Y. A mean-field stochastic maximum principle via malliavin calculus[J]. Stochastics An International Journal of Probability and Stochastic Processes, 2012, 84(5-6): 643-666.
[27] NI Y H, LI X, ZHANG J F. Indefinite mean-field stochastic linear-quadratic optimal control: from finite horizon to infinite horizon[J]. IEEE Transactions on Automatic Control, 2015, 61 (11): 3269-3284.
[28] NI Y H, ELLIOTT R, LI X. Discrete-time mean-field stochastic linear–quadratic optimal control problems, ii: Infinite horizon case[J]. Automatica, 2015, 57: 65-77.
[29] ELLIOTT R, LI X, NI Y H. Discrete time mean-field stochastic linear-quadratic optimal control problems[J]. Automatica, 2013, 49(11): 3222-3233.
[30] SUN J, YONG J. Stochastic linear-quadratic optimal control theory: Differential games and mean-field problems[M]. Springer Nature, 2020.
[31] LI X, TANG S. General necessary conditions for partially observed optimal stochastic controls [J]. Journal of applied probability, 1995, 32(4): 1118-1137.
[32] HUANG J, WANG G, XIONG J. A maximum principle for partial information backward stochastic control problems with applications[J]. SIAM journal on Control and Optimization, 2009, 48(4): 2106-2117.
[33] SHI J, WU Z. Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems[J]. Journal of optimization theory and applications, 2010, 145(3): 543-578.
[34] WANG G, WU Z, XIONG J. A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information[J]. IEEE Transactions on Automatic Control, 2015, 60(11): 2904-2916.
[35] MA H, LIU B. Linear-quadratic optimal control problem for partially observed forward-backward stochastic differential equations of mean-field type[J]. Asian Journal of Control, 2016, 18(6): 2146-2157.
[36] HUANG P, WANG G, ZHANG H. A partial information linear-quadratic optimal control problem of backward stochastic differential equation with its applications[J]. Science China Information Sciences, 2020, 63(9): 1-13.
[37] WANG G, WANG W, YAN Z. Linear quadratic control of backward stochastic differential equation with partial information[J]. Applied Mathematics and Computation, 2021, 403: 126164.
[38] SUN J, XIONG J. Stochastic linear-quadratic optimal control with partial observation[J]. arXiv preprint arXiv:2202.13632, 2022.
[39] WU Z, ZHUANG Y. Linear-quadratic partially observed forward–backward stochastic differential games and its application in finance[J]. Applied Mathematics and Computation, 2018, 321: 577-592.
[40] WANG G, WU Z, XIONG J. Maximum principles for forward-backward stochastic control systems with correlated state and observation noises[J]. SIAM Journal on Control and Optimization, 2013, 51(1): 491-524.
[41] WANG G, XIAO H, XIONG J. A kind of lq non-zero sum differential game of backward stochastic differential equation with asymmetric information[J]. Automatica, 2018, 97: 346-352.
[42] WANG G, XIAO H, XING G. An optimal control problem for mean-field forward–backward stochastic differential equation with noisy observation[J]. Automatica, 2017, 86: 104-109.
[43] WONHAM W M. On the separation theorem of stochastic control[J]. SIAM Journal on Control, 1968, 6(2): 312-326.
[44] BENSOUSSAN A. Estimation and control of dynamical systems: volume 48[M]. Springer, 2018.
[45] KARATZAS I, SHREVE S. Brownian motion and stochastic calculus: volume 113[M]. Springer Science & Business Media, 2012.
[46] ETHERIDGE A, BAXTER M. A course in financial calculus[M]. Cambridge University Press, 2002.
[47] KARATZAS I, OCONE D L, LI J. An extension of clark’formula[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 1991, 37(3): 127-131.
[48] ROGERS L C G, WILLIAMS D. Diffusions, markov processes and martingales: Volume 2, itô calculus: volume 2[M]. Cambridge university press, 2000
修改评论