[1] ARIF M, WANG G, CHEN S. Deep learning with non-parametric regression model fortraffic flow prediction[C]//2018 IEEE 16th Intl Conf on Dependable, Autonomic and SecureComputing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Confon Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018: 681-688.
[2] SEVERN K E, DRYDEN I L, PRESTON S P. Non-parametric regression for networks[J]. Stat,2021, 10(1): e373.
[3] WADHVANI R, SHUKLA S. Analysis of parametric and non-parametric regression techniquesto model the wind turbine power curve[J]. Wind Engineering, 2019, 43(3): 225-232.
[4] FRIEDMAN J H, STUETZLE W. Projection pursuit regression[J]. Journal of the Americanstatistical Association, 1981, 76(376): 817-823.
[5] ZHANG Y, LIAN H, YU Y. Ultra-high dimensional single-index quantile regression[J]. Journalof Machine Learning Research, 2020, 21(224): 1-25.
[6] KUCHIBHOTLA A K, PATRA R K. Efficient estimation in single index models throughsmoothing splines[J]. Bernoulli, 2020, 26(2): 1587-1618.
[7] BICKEL P J, DOKSUM K A. Mathematical statistics: basic ideas and selected topics, volumesi-ii package[M]. Chapman and Hall/CRC, 2015.
[8] AKAIKE H. A new look at the statistical model identification[J]. IEEE transactions on automaticcontrol, 1974, 19(6): 716-723.
[9] SCHWARZ G. Estimating the dimension of a model[J]. The annals of statistics, 1978: 461-464.
[10] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the RoyalStatistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[11] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American statisticalassociation, 2006, 101(476): 1418-1429.
[12] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American statistical Association, 2001, 96(456): 1348-1360.
[13] JIANG R, QIAN W M, ZHOU Z G. Weighted composite quantile regression for single-indexmodels[J]. Journal of Multivariate Analysis, 2016, 148: 34-48.
[14] LI K C. Sliced inverse regression for dimension reduction[J]. Journal of the American StatisticalAssociation, 1991, 86(414): 316-327.
[15] ICHIMURA H. Estimation of single index models[D]. Massachusetts Institute of Technology,1987.
[16] ICHIMURA H. Semiparametric least squares (sls) and weighted sls estimation of single-indexmodels[J]. Journal of econometrics, 1993, 58(1-2): 71-120.
[17] HÄRDLE W, STOKER T M. Investigating smooth multiple regression by the method of averagederivatives[J]. Journal of the American statistical Association, 1989, 84(408): 986-995.
[18] DUAN N, LI K C. Slicing regression: a link-free regression method[J]. The Annals of Statistics,1991: 505-530.
[19] COOK R D, WEISBERG S. Sliced inverse regression for dimension reduction: Comment[J].Journal of the American Statistical Association, 1991, 86(414): 328-332.
[20] HOROWITZ J L, HÄRDLE W. Direct semiparametric estimation of single-index models withdiscrete covariates[J]. Journal of the American Statistical Association, 1996, 91(436): 1632-1640.
[21] HRISTACHE M, JUDITSKY A, SPOKOINY V. Direct estimation of the index coefficient in asingle-index model[J]. Annals of Statistics, 2001: 595-623.
[22] XIA Y, TONG H, LI W K, et al. An adaptive estimation of dimension reduction space[M]//Exploration of A Nonlinear World: An Appreciation of Howell Tong’s Contributions to Statistics.World Scientific, 2009: 299-346.
[23] XIA Y. A constructive approach to the estimation of dimension reduction directions[J]. TheAnnals of Statistics, 2007, 35(6): 2654-2690.
[24] LI B, WANG S. On directional regression for dimension reduction[J]. Journal of the AmericanStatistical Association, 2007, 102(479): 997-1008.
[25] WANG L, YANG L. Spline estimation of single-index models[J]. Statistica Sinica, 2009: 765-783.
[26] KONG E, XIA Y. A single-index quantile regression model and its estimation[J]. EconometricTheory, 2012, 28(4): 730-768.
[27] SHENG W, YIN X. Direction estimation in single-index models via distance covariance[J].Journal of Multivariate Analysis, 2013, 122: 148-161.
[28] LIU J, ZHANG R, ZHAO W, et al. A robust and efficient estimation method for single indexmodels[J]. Journal of Multivariate Analysis, 2013, 122: 226-238.
[29] JIANG R, ZHOU Z G, QIAN W M, et al. Two step composite quantile regression for singleindexmodels[J]. Computational Statistics & Data Analysis, 2013, 64: 180-191.
[30] LIU X. A cubic polynomial single-index model and its estimate[J]. Master Thesis, 2020, 49.
[31] CARROLL R J, FAN J, GIJBELS I, et al. Generalized partially linear single-index models[J].Journal of the American Statistical Association, 1997, 92(438): 477-489.
[32] XIA Y, LI W K. On single-index coefficient regression models[J]. Journal of the AmericanStatistical Association, 1999, 94(448): 1275-1285.
[33] XIA Y, TONG H, LI W K. On extended partially linear single-index models[J]. Biometrika,1999, 86(4): 831-842.
[34] WANG J L, XUE L, ZHU L, et al. Estimation for a partial-linear single-index model[J]. TheAnnals of statistics, 2010, 38(1): 246-274.
[35] WANG K, LIN L. New efficient estimation and variable selection in models with single-indexstructure[J]. Statistics & Probability Letters, 2014, 89: 58-64.
[36] WANG Q, WU R. Shrinkage estimation of partially linear single-index models[J]. Statistics &Probability Letters, 2013, 83(10): 2324-2331.
[37] FRANK L E, FRIEDMAN J H. A statistical view of some chemometrics regression tools[J].Technometrics, 1993, 35(2): 109-135.
[38] BREIMAN L. Better subset regression using the nonnegative garrote[J]. Technometrics, 1995,37(4): 373-384.
[39] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of theroyal statistical society: series B (statistical methodology), 2005, 67(2): 301-320.
[40] ZHANG C H. Nearly unbiased variable selection under minimax concave penalty[J]. TheAnnals of statistics, 2010, 38(2): 894-942.
[41] 李锋, 卢一强, 李高荣. 部分线性模型的AdaptiveLASSO 变量选择[J]. 应用概率统计, 2012,28(6): 614-624.
[42] FAN J, LI R. New estimation and model selection procedures for semiparametric modeling inlongitudinal data analysis[J]. Journal of the American Statistical Association, 2004, 99(467):710-723.
[43] LI L. Sparse sufficient dimension reduction[J]. Biometrika, 2007, 94(3): 603-613.
[44] ZHU L P, ZHU L X. Nonconcave penalized inverse regression in single-index models with highdimensional predictors[J]. Journal of Multivariate Analysis, 2009, 100(5): 862-875.
[45] PENG H, HUANG T. Penalized least squares for single index models[J]. Journal of StatisticalPlanning and Inference, 2011, 141(4): 1362-1379.
[46] ZENG P, HE T, ZHU Y. A lasso-type approach for estimation and variable selection in singleindex models[J]. Journal of Computational and Graphical Statistics, 2012, 21(1): 92-109.
[47] ROJAS C R, WAHLBERG B, HJALMARSSON H. A sparse estimation technique for generalmodel structures[C]//2013 European Control Conference (ECC). IEEE, 2013: 2410-2414.
[48] ZENG B, WEN X M, ZHU L. A link-free sparse group variable selection method for singleindexmodel[J]. Journal of Applied Statistics, 2017, 44(13): 2388-2400.
[49] CHEN X, SHENG W, YIN X. Efficient sparse estimate of sufficient dimension reduction inhigh dimension[J]. Technometrics, 2018, 60(2): 161-168.
[50] FENG Y, XIAO L, CHI E C. Sparse single index models for multivariate responses[J]. Journalof Computational and Graphical Statistics, 2021, 30(1): 115-124.
[51] WANG T, XIA Y. A piecewise single-index model for dimension reduction[J]. Technometrics,2014, 56(3): 312-324.
[52] LU Y, ZHANG R, HU B. The adaptive lasso spline estimation of single-index model[J]. Journalof Systems Science and Complexity, 2016, 29(4): 1100-1111.
[53] YOUNG M. The stone-weierstrass theorem[M]//MATH 328 Notes. Queen’s University atKingston, 2006.
[54] FAN J, HUANG T. Profile likelihood inferences on semiparametric varying-coefficient partiallylinear models[J]. Bernoulli, 2005, 11(6): 1031-1057.
[55] HARRISON JR D, RUBINFELD D L. Hedonic housing prices and the demand for clean air[J].Journal of environmental economics and management, 1978, 5(1): 81-102.
[56] ZHANG H H, CHENG G, LIU Y. Linear or nonlinear? automatic structure discovery forpartially linear models[J]. Journal of the American Statistical Association, 2011, 106(495):1099-1112.
修改评论