中文版 | English
题名

SPECTRAL ANALYSIS OF LARGE DIMENSIONAL SAMPLE AUTOCORRELATION AND AUTOCOVARIANCE MATRICES

其他题名
大维样本自相关和自协方差矩阵的谱分析
姓名
姓名拼音
LONG Zhanting
学号
12032886
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
李曾
导师单位
统计与数据科学系
论文答辩日期
2022-05-05
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Determining the number of common factors is an important problem in high dimensional factor model which is widely concerned in financial econometrics. Most existing methods are based on a sample covariance matrix or a sample auto­covariance matrix. While this thesis tries to construct estimators of the total number of factors based on sample auto­correlation and sample weighted covariance matrices. As a first step, we focus on the spectral analysis of sample auto­correlation and auto­covariance matrices under the high­-dimensional context when both dimension and sample size are large. These theoretical results play important roles in parameter estimation and inference in the high dimensional factor model. As the first part of this thesis we consider the sample auto­correlation matrix, we study the limiting behaviors of singular values of a lag­ged sample auto­correlation matrix of error process in the high­dimensional factor model. Specifically, we derive the limiting spectral distribution (LSD) which characterizes the global spectrum, and find out the limit of its largest singular value. Under mild assumptions, we show that the LSD is the same as that of the lag­ged sample auto­covariance matrix. Based on this asymptotic equivalence, we additionally show that the largest singular value of converges almost surely to the right end point of the support of its LSD. Our results take the first step to identifying the number of factors in factor analysis. Our theoretical results are fully supported by numerical experiments as well. As the second part of this thesis, we propose a sample weighted covariance matrix combining sample covariance matrix and sample auto­covariance matrix, in order to make use of more information from sample covariance and sample auto­covariance matrices. We derive the LSD of sample weighted covariance matrix of error process in the high dimensional factor model. Then we propose a new estimator of the total number of factors based on the sample weighted covariance matrix. We also provide numerical experiments to check the performance of the estimator. We find out that the new estimator demonstrates its estimation consistency under the scenarios we consider.

其他摘要

因子个数的估计是金融计量经济学中广泛关注的高维因子模型的核心问题, 大多数现有的研究方法都是基于样本协方差矩阵或者样本自协方差矩阵。而这篇 论文重点研究高维数据背景下,在维数与样本量呈比例趋近于无穷大的理论框架 下,样本自相关和加权自协方差矩阵的渐近谱理论,并应用到高维因子模型里的 估计和统计推断问题中。 在论文的第一部分我们首先考虑的是样本自相关矩阵,我们研究了高维因子 模型中误差项 𝜖 的样本自相关矩阵的奇异值的极限性质。特别地,我们推导出R_𝜖^𝜏的极限谱分布,并且找到其最大奇异值的极限。在特定的假设下,我们证明了 样本自协方差矩阵的极限谱分布和样本自相关矩阵的极限谱分布是相同的。基于 这种渐近等价性,我们还证明了R_𝜖^𝜏的最大奇异值收敛到其极限谱分布的支撑集 的右边界。我们的结果为高维因子模型中因子个数估计的问题奠定了理论的基础。 我们的理论结果也得到了数值实验的充分支持。 而本论文的第二部分,为了更多地利用样本协方差和样本自协方差矩阵的信 息,我们构造了一个结合样本协方差矩阵和样本自协方差矩阵的加权样本协方差 矩阵。我们推导出了加权样本协方差矩阵的极限谱分布。并基于加权样本协方差 矩阵提出了新的因子个数的估计量,并且通过数值模拟来检验我们的估计量的效 果。基于数值模拟结果,新的估计量对于我们数值模拟中设置的实例有相合性。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] BAI J, NG S. Determining the number of factors in approximate factor models[J]. Economet rica, 2002, 70(1): 191­221.
[2] HALLIN M, LIŠKA R. Determining the number of factors in the general dynamic factor model[J]. Journal of the American Statistical Association, 2007, 102(478): 603­617.
[3] LAM C, YAO Q. Factor modeling for high­dimensional time series: inference for the number of factors[J]. The Annals of Statistics, 2012, 40(2): 694­726.
[4] FAN J, GUO J, ZHENG S. Estimating number of factors by adjusted eigenvalues threshold ing[J]. Journal of the American Statistical Association, 2020: 1­10.
[5] JOHNSTONE I M. On the distribution of the largest eigenvalue in principal components anal ysis[J]. The Annals of statistics, 2001, 29(2): 295­327.
[6] BAIK J, SILVERSTEIN J W. Eigenvalues of large sample covariance matrices of spiked pop ulation models[J]. Journal of multivariate analysis, 2006, 97(6): 1382­1408.
[7] BAI Z, YAO J F. Central limit theorems for eigenvalues in a spiked population model[C]//Annales de l’IHP Probabilités et statistiques: volume 44. [S.l.: s.n.], 2008: 447­474.
[8] BENAYCH­GEORGES F, NADAKUDITI R R. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[J]. Advances in Mathematics, 2011, 227(1): 494­521.
[9] WIGNER E P. Characteristic vectors of bordered matrices with infinite dimensions[J]. Annals of Mathematics, 1955, 62(3): 548­564.
[10] WIGNER E P. On the distribution of the roots of certain symmetric matrices[J]. Annals of Mathematics, 1958, 67(2): 325­327.
[11] MARČENKO V A, PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Mathematics of the USSR­Sbornik, 1967, 1(4): 457­483.
[12] YIN Y, KRISHNAIAH P. A limit theorem for the eigenvalues of product of two random matrices[J]. Journal of Multivariate Analysis, 1983, 13(4): 489­507.
[13] YIN Y. Limiting spectral distribution for a class of random matrices[J]. Journal of Multivariate Analysis, 1986, 20(1): 50­68.
[14] BAI Z, MIAO B, JIN B. On limit theorem for the eigenvalues of product of two random matrices[J]. Journal of multivariate analysis, 2007, 98(1): 76­101.
[15] YIN Y, BAI Z, KRISHNAIAH P. Limiting behavior of the eigenvalues of a multivariate f matrix[J]. Journal of multivariate analysis, 1983, 13(4): 508­516.
[16] BAI Z D, YIN Y Q, KRISHNAIAH P R. On limiting spectral distribution of product of two ran dom matrices when the underlying distribution is isotropic[J]. Journal of multivariate analysis, 1986, 19(1): 189­200.
[17] BAI Z D, YIN Y Q, KRISHNAIAH P R. On the limiting empirical distribution function of the eigenvalues of a multivariate f matrix[J]. Theory of Probability & Its Applications, 1988, 32 (3): 490­500.
[18] WACHTER K W. The Limiting Empirical Measure of Multiple Discriminant Ratios[J]. The Annals of Statistics, 8(5): 937 ­ 957.
[19] SILVERSTEIN J W. The limiting eigenvalue distribution of a multivariate f matrix[J]. SIAMJournal on Mathematical Analysis, 1985, 16(3): 641­646.
[20] SILVERSTEIN J W, BAI Z. On the empirical distribution of eigenvalues of a class of largedimensional random matrices[J]. Journal of Multivariate analysis, 1995, 54(2): 175­192.
[21] BOSE A, MITRA J. Limiting spectral distribution of a special circulant[J]. Statistics & proba bility letters, 2002, 60(1): 111­120.
[22] JIANG T. The limiting distributions of eigenvalues of sample correlation matrices[J]. Sankhyā:The Indian Journal of Statistics, 2004: 35­48.
[23] LI Z, PAN G, YAO J. On singular value distribution of large­dimensional autocovariance ma trices[J]. Journal of Multivariate Analysis, 2015, 137: 119­140.
[24] GEMAN S. A limit theorem for the norm of random matrices[J]. The Annals of Probability,1980: 252­261.
[25] YIN Y Q, BAI Z D, KRISHNAIAH P R. On the limit of the largest eigenvalue of the largedimensional sample covariance matrix[J]. Probability theory and related fields, 1988, 78(4):509­521.
[26] BAI Z D, YIN Y Q. Necessary and sufficient conditions for almost sure convergence of thelargest eigenvalue of a wigner matrix[J]. The Annals of Probability, 1988: 1729­1741.
[27] VU V H. Spectral norm of random matrices[J]. Combinatorica, 2007, 27(6): 721­736.
[28] WANG Q, YAO J. Moment approach for singular values distribution of a large auto­covariancematrix[C]//Annales de l’Institut Henri Poincaré, Probabilités et Statistiques: volume 52. [S.l.]:Institut Henri Poincaré, 2016: 1641­1666.
[29] ZHENG S, BAI Z, YAO J. Substitution principle for clt of linear spectral statistics of high dimensional sample covariance matrices with applications to hypothesis testing[J]. The Annalsof Statistics, 2015, 43(2): 546­591.
[30] BAI Z D, YIN Y Q. Limit of the smallest eigenvalue of a large dimensional sample covariancematrix[J]. The Annals of Probability, 1993: 1275­1294.
[31] HORN R A, JOHNSON C R. Matrix analysis[M]. [S.l.]: Cambridge University Press, 1985.
[32] LONG Z, LI Z, LIN R. On singular values of large dimensional lag­tau sample autocorrelationmatrices[J]. arXiv preprint arXiv:2202.12526, 2022.
[33] ONATSKI A. Testing hypotheses about the number of factors in large factor models[J]. Econo metrica, 2009, 77(5): 1447­1479.
[34] ONATSKI A. Determining the number of factors from empirical distribution of eigenvalues[J].The Review of Economics and Statistics, 2010, 92(4): 1004­1016.
[35] WANG H. Factor profiled sure independence screening[J]. Biometrika, 2012, 99(1): 15­28.
[36] AHN S C, HORENSTEIN A R. Eigenvalue ratio test for the number of factors[J]. Econometrica, 2013, 81(3): 1203­1227.
[37] LI Z, WANG Q, YAO J, et al. Identifying the number of factors from singular values of a large sample auto­covariance matrix[J]. Annals of Statistics, 2017, 45(1): 257­288.
[38] PASSEMIER D, YAO J F. On determining the number of spikes in a high­dimensional spiked population model[J]. Random Matrices: Theory and Applications, 2012, 1(01): 1150002.
[39] JIN B, WANG C, BAI Z, et al. Limiting spectral distribution of a symmetrized auto­cross covariance matrix[J]. The Annals of Applied Probability, 2014, 24(3): 1199­1225.

所在学位评定分委会
统计与数据科学系
国内图书分类号
O211.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336420
专题理学院_统计与数据科学系
推荐引用方式
GB/T 7714
Long ZT. SPECTRAL ANALYSIS OF LARGE DIMENSIONAL SAMPLE AUTOCORRELATION AND AUTOCOVARIANCE MATRICES[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032886-龙占廷-统计与数据科学(1622KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龙占廷]的文章
百度学术
百度学术中相似的文章
[龙占廷]的文章
必应学术
必应学术中相似的文章
[龙占廷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。