[1] Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295, 2418.
[2] Service, R. F., How far can we push chemical self-assembly? Science 2005, 309, 95.
[3] Qi R.; Zhu Y.; Han L.; Wang M.; He F., Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)-b-poly (ethylene glycol). Macromolecules 2020, 53 (15), 6555-6565.
[4] Alexandridis P.; Lindman B., Amphiphilic Block Copolymers: Self-assembly and Applications. Amsterdam: Elsevier, 2000.
[5] Bates F. S.; Fredrickson G. H., Block copolymers-designer soft materials. Phys. Today 1999, 52: 32-38.
[6] Kim J. K.; Yang S. Y.; Lee Y.; Kim Y., Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35(11): 1325-1349.
[7] Orilall M. C.; Wiener U., Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40(2): 520-535.
[8] Zhang L.; Eisenberg A., Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in solution. Science 1995, 268(5218): 1728-1731.
[9] Chen D.; Jiang M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38 (6): 494-502.
[10] Cui H.; Chen Z.; Zhong S.; Wooley K.L.; Pochan D. J., Block copolymer assembly via kinetic control. Science 2007, 317 (5838): 647-650.
[11] Zhang L.; Eisenberg A., Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous, solutions. J. Am. Chem. Soc. 1996, 118 (13): 3168-3181
[12] Wang X.; Guerin G.; Wang H.; Wang Y.S.; Manners I.; Winnik A. M., Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007, 317 (5838): 644-647.
[13] Harada A.; Kataoka K., Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283 (5398): 65-67.
[14] Förster S.; Antonietti M., Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 1998, 10 (3): 195-217.
[15] Gädt T.; leong N. S.; Cambridge G.; Winnik M. A.; Manners I., Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 2009, 8 (2): 144-150.
[16] Gillies E. R.; Jonson T. B.; Fréchet J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 2004, 126 (38): 11936-11943.
[17] Goodwin A. P.; Mynar J. L.; Ma Y.; Fleming R. G.; Fréchet M. J. J., Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 2005, 127 (28): 9952-9953.
[18] Hu J.; Liu G.; Nijkang G., Hierarchical interfacial assembly of ABC triblock copolymer. J. Am. Chem. Soc. 2008, 130 (11): 3236-3237.
[19] Qiu H.; Gao Y.; Boott C. E.; Gould O. E.; Harniman R. L.; Miles M. J.; Webb S. E. D.; Winnik M. A.; Manners I., Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 2016, 352 (6286): 697-701.
[20] Kataoka K.; Harada A.; Nagasaki Y., Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug. Deliv. Rev. 2001, 47 (1): 113-131.
[21] Mai Y.; Eisenberg A., Chem. Soc. Rev. 2012, 41, 5969-5985.
[22] Shen H.; Zhang L.; Eisenberg A., Thermodynamics of crew-cut micelle formation of polystyrene-b-poly (acrylic acid) diblock copolymers in DMF/H2O mixtures. J. Phys. Chem. B. 1997, 101(24):4697-4708.
[23] F ̈orster S.; Antonietti M., Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. Adv. Mater. 1998, 10, 195–217.
[24] Ganda, S.; Dulle, M.; Drechsler, M.; Förster, B.; Förster, S.; Stenzel, M. H., Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers. Macromolecules 2017, 50 (21), 8544-8553.
[25] Schacher F. H.; Rupar P. A.; Manners I., Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921.
[26] Riess G., Micellization of block copolymers. Prog. Polym. Sci. 2003, 28(7): 1107-1170.
[27] Cameron N. S.; Corbierre M. K.; Eisenberg A., Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Can. J. Chem. 1999, 77, 1311–1326.
[28] Tritschler U.; Pearce S.; Gwyther J.; Whittell G. R.; Manners I., Functional nanoparticles from the solution self-Assembly of block copolymers. Macromolecules 2017, 50, 3439–3463.
[29] Hayward R. C.; Pochan D. J., Tailored assemblies of block copolymers in solution: It is all about the process. Macromolecules 2010, 43, 3577–3584.
[30] Macfarlane L.; Zhao C.; Cai J.; Qiu H.; Manners I., Emerging applications for living crystallization- driven self-assembly, Chem. Sci. 2021,12, 4661-4682.
[31] Lin Y. Y.; Thomas M. R.; Gelmi A.; Leonardo V.; Pashuck E. T.; Maynard S. A.; Wang Y.; Stevens M. M., Self-Assembled 2D Free- Standing Janus Nanosheets with Single-Layer Thickness. J. Am. Chem. Soc. 2017, 139, 13592−13595.
[32] Zhuo M. P.; Tao Y. C.; Wang X. D.; Wu Y. C.; Chen S.; Liao L. S.; Jiang L., 2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. Angew. Chem., Int. Ed. 2018, 57, 11300−11304.
[33] Han L.; Wang M. J.; Jia X. M.; Chen W.; Qian H. J.; He F., Uniform two-dimensional square assemblies from conjugated block copolymers driven by pi-pi interactions with controllable sizes. Nat. Commun. 2018, 9, No. 865.
[34] Ganda S.; Dulle M.; Drechsler M.; Forster B.; Forster S.; Stenzel M. H., Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers. Macromolecules 2017, 50, 8544−8553.
[35] Hudson Z. M.; Boott C. E.; Robinson M. E.; Rupar P. A.; Winnik M. A.; Manners I., Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 2014, 6, 893−898.
[36] Nazemi A.; He X. M.; MacFarlane L. R.; Harniman R. L.; Hsiao M. S.; Winnik M. A.; Faul C. F. J.; Manners I., Uniform “Patchy” Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. J. Am. Chem. Soc. 2017, 139, 4409−4417.
[37] Wang M. J.; Han L.; Zhu Y. L.; Qi R.; Tian L. L.; He F., Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Self-Assembly of Conjugated Block Copolymers. Small Methods 2020, 4, 1900470.
[38] Zhu C.; Liu L.; Yang Q.; Lv F.; Wang S., Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 112, 4687–4735 (2012).
[39] Tao D.; Feng C.; Cui Y.; Yang X.; Manners I.; Winnik, M. A.; Huang, X., Monodisperse Fiber-like micelles of controlled length and composition with an oligo (p-phenylenevinylene) core via “living” crystallization-driven self-assembly. J. Am. Chem. Soc. 2017, 139, 7136−7139.
[40] Sun H.; Liu J.; Li S.; Zhou L.; Wang J.; Liu L.; Lv F.; Gu Q.; Hu B.; Ma Y.; Wang S., Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid b Assembly. Angew. Chem., Int. Ed. 2019, 58, 5988−5993.
[41] Wang M.; Han L.; Zhu Y.; Qi R.; Tian L.; He F., Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polym. Chem. 2020, 11, 61-67.
[42] Han L.; Fan H.; Zhu Y. L.; Wang M.J.; Pan F.; Yu, D. P.; Zhao, Y.; He, F., Precisely Controlled Two-Dimensional Rhombic Copolymer Micelles for Sensitive Flexible Tunneling Devices. CCS Chemistry 2020, 3 (5), 1399-1409.
[43] Schmelz J.; Schedl A. E.; Steinlein C.; Manners I.; Schmalz H., Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 2012. 134(34): 14217-14225.
[44] Desbaumes L.; Eisenberg A., Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer. Langmuir 1999, 15(1): 36-38.
[45] Shen H.; Eisenberg A., Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O. J. Phys. Chem. B 1999. 103(44): 9473-9487.
[46] Yu Y.; Zhang L.; Eisenberg A., Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers. Macromolecules 1998, 31(4): 1144-1154
[47] Lehn J. M., Supramolecular chemistry. Science 1993, 260(5115): 1762-1764.
[48] Whitesides G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295(5564): 2418-2421.
[49] Aizenberg J.; Fratzl P., Biological and biomimetic materials. Adv. Mater. 2009, 21(4): 387-388.
[50] Sanchez C.; Arribart H.; Guille M. M. G., Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4(4): 277-288.
[51] Palmer L. C.; Newcomb C. J.; Kaltz S. R.; Spoerke E. D.; Stupp S. I., Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008, 108(11): 4754-4783.
[52] Ariga K.; Hill J. P.; Lee M. V.; Vinu A.; Charvet R.; Acharya S., Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 9(1): 1468-1565.
[53] Nie Z.; Kumacheva E., Patterning surfaces with functional polymers. Nat. Mater. 2008, 7(4): 277-290.
[54] Ajayaghosh A.; Praveen V. K.; Vijayakumar C., Organogels as scaffolds for excitation energy transfer and light harvesting(J]. Chem. Soc. Rev. 2008, 37(1): 109-122.
[55] He Q.; Duan L.; Qi W.; Wang K.; Cui Y.; Yan X.; Li J., Microcapsules containing a biomolecular motor for atp biosynthesis. Adv. Mater. 2008, 20(15): 2933-2937.
[56] Ligthart G.; Ohkawa, H.; Sijbesma, R. P.;Meijer E. W., Complementary quadruple hydrogen bonding in supramolecular copolymers . J. Am. Chem. Soc. 2005, 127(3): 810-811.
[57] Burattini S.; Greenland B. W.; Hayes, W.; Mackay M. E.; Rowan S. J.; Colquhoun H. M., A supramolecular polymer based on tweezer-type π-π interactions: molecular design for healability and enhanced toughness. Chem. Mater. 2011, 23(1): 6-8.
[58] Ko I. K.; Kean T. J.; Dennis J. E. Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials 2009, 30: 3702-3710.
[59] Xu X. D.; Li X.; Chen, H.; Qu Q.; Zhao L.; Agren H.; Zhao Y., Host-guest interaction-mediated construction of hydrogels and nanovesicles for drug delivery. Small 2015, 11(44): 5901-5906.
[60] Minakawa M. ; Nakagawa M.; Wang K. H.; Imura Y.; Kawai T., Controlling Helical Pitch of Chiral Supramolecular Nanofibers Composed of Two Amphiphiles. Bull. Chem. Soc. Jpn. 2020, 93 (10), 1150-1154.
[61] Ghosh D., Farahani A. D., Martin A. D.; Thordarson P.; Damodaran K. K., Chem. Mater. 2020, 32, 3517.
[62] Sorrenti A.; Illa O.; Ortuno R. M., Amphiphiles in aqueous solution: Well beyond a soap bubble[J]. Chem. Soc. Rev. 2013, 42(21): 8200-8219.
[63] Yui H.; Minamikawa H.; Danev R.; Nagayama K.; Kamiya S.; Shimizu T., Growth process and molecular packing of a self-assembled lipid nanotube: Phase-contrast transmission electron microscopy and XRD analyses. Langmuir 2008, 24(3): 709-713.
[64] Kamiya S.; Minamikawa, H.; Jung, J. H.; Yang B.; Masuda M.; Shimizu T., Molecular structure of glucopyranosylamide lipid and nanotube morphology. Langmuir 2005, 21(2): 743-750.
[65] Barclay T. G.; Constantopoulos, K.; Zhang, W., Fujiki M; Petrovsky N.; Matisons J. G., Chiral self-assembly of designed amphiphiles: Influences on aggregate morphology. Langmuir 2013, 29(32): 10001-10010.
[66] Fuhrhop J. H.; Helfrich W., Fluid and solid fibers made of lipid molecular bilayers. Chem. Rev. 1993, 93(4): 1565-1582.
[67] Fujita N.; Shinkai S., Design and function of low molecular-mass organic gelators (Imogs) bearing steroid and sugar groups. Molecular gels: materials with self-assembled fibrillar networks, 2006: 553-575.
[68] Shimizu T.; Masuda M.; Minamikawa H., Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 2005, 105(4): 1401-1443.
[69] Wang X.; Liu M., Vicinal solvent effect on supramolecular gelation: Alcohol controlled topochemical reaction and the toruloid nanostructure. Chem. A Euro. J. 2014, 20(32): 10110-10116.
[70] Takafuji M. Kira Y.; Tsuji H., Sawada S.; Hachisako H.; Ihara H., Optically active polymer film tuned by a chirally self-assembled molecular organogel. Tetrahedron 2007, 63(31): 7489-7494.
[71] Shirosaki T.; Chowdhury S.; Takafuji M., Alekperov D.; Popova G.; Hachisako H.; Ihara H., Functional organogels from lipophilic 1-glutamide derivative immobilized on cyclotriphosphazene core. J. Mater. Res. 2006, 21(5): 1274-1278.
[72] Kira Y.; Okazaki Y.; Sawada T.; Takafuji M.; Ihara H., Amphiphilic molecular gels from omega-aminoalkylated I-glutamic acid derivatives with unique chiroptical properties. Amino Acids 2010, 39(2): 587-597.
[72] Jintoku H.; Sagawa T.; Sawada T., Takafuji M.; Hachisako H.; Ihara H., Molecular organogel-forming porphyrin derivative with hydrophobic 1-glutamide. Tetrahedron Lett. 2008, 49(25): 3987-3990.
[73] Hifsudheen M.; Mishra R. K.; Vedhanarayanan B., Praveen V. K.; Ajayaghosh A., The helix to super-helix transition in the self-assembly of pi-systems: Superseding of molecular chirality at hierarchical level. Angew. Chem. Int. Ed. 2017, 56(41): 12634-12638.
[74] Garoff R. A.; Litzinger E. A.; Connor R. E., Fishman I., Armitage B. A., Helical Aggregation of Cyanine Dyes on DNA Templates: Effect of Dye Structure on Formation of Homo- and Hetero aggregates. Langmuir 2002, 18(16):6330-6337.
[75] Crusats J.; El-Hachemi Z.; Ribo J. M.; Hydrodynamic effects on chiral induction. Chem. Soc. Rev. 2010, 39(2): 569-577.
[76] Micali N.; Engelkamp H.; van Rhee P. G., Chiristianen P. C. M.; Scolaro L. M.; Mann J. C., Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 2012, 4(3): 201-207.
[77] Ribo J. M.; Crusats J.; Sagues F., Claret J.; Rubires R., Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292(5524): 2063-2066.
[77] Yuan, J.; Liu, M. H., Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecy) naphtha 2,3 imidazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125(17): 5051-5056.
[78] Huang, X.; Li, C.; Jiang, S. G., Wang X.; Zhang B.; Liu M. H., Self-assembled spiral nanoarchitecture and supramolecular chirality in langmuir-blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126(5): 1322-1323.
[79] Oiu Y.: Chen P.: Liu M., Evolution of various porphyrin nanostructures via an oil/aqueous medium: Controlled self-assembly, further organization, and supramolecular chirality. J. Am. Chem. Soc. 2010, 132(28): 9644-9652.
[80] Zhang S.; Yang S.; Lan J., Yang S.; You J., Helical nonracemic tubular coordination polymer gelators from simple achiral molecules. Chem. Commun. 2008, 46: 6170-6172.
[81] Song B.; Liu B.; Jin Y.; He X.; Tang D.; Wu G.; Yin S., Controlled self-assembly of helical nano-ribbons formed by achiral amphiphiles. Nanoscale 2015, 7(3): 930-935.
[82] Link D. R.; Natale G.; Shao R.; Maclennan J. E.; Clark N. A.; Korblova E.; Walba D. M., Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278(5345): 1924-1927.
[83] Hough L. E.; Spannuth M.; Nakata M.; Coleman D. A.; Jones C. D.; Danlgraber G.; Tschierske C.; Watanabe J.; Korblova E.; Walba D. M.; Maclennan J. E.; Glaser M. A.; Clark N. A., Chiral isotropic liquids from achiral molecules. Science 2009, 325(5939): 452-456.
[84] Dressel C.; Liu F.; Prehm M., Zeng X.; Ungar G.; Tschierske C., Dynamic mirror-symmetry breaking in bicontinuous cubic phases. Angew. Chem. Int. Ed. 2014, 53(48): 13115-13120.
[85] Sang Y.; Yang D.; Duan P.; Liu M., Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10(9): 2718-2724.
[86] Wang X.; Li M.; Song, P., Lv X.; Liu Z.; Huang J.; Yan Y., Reversible manipulation of supramolecular chirality using host-guest dynamics
修改评论