中文版 | English
题名

电解液添加剂对碱金属电池中SEI作用的冷冻透射电镜研究

其他题名
CRYO-TEM STUDY OF THE ADDITIVE EFFECTS ON SEI FORMATION ON THE ALKALINE METAL ANODES
姓名
姓名拼音
ZOU Yucheng
学号
11930248
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
谷猛
导师单位
材料科学与工程系
论文答辩日期
2022-04-29
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

冷冻电镜作为一种有效的研究手段,在电池界面等敏感材料研究领域发挥了重要作用。冷冻电镜已经在锂金属负极研究中广泛应用,但在其他碱金属负极研究中还鲜有涉及。

为了减少燃烧化石燃料对环境造成的不利影响,我们迫切需要探索可再生能源技术,并开发下一代储能系统。其中锂离子电池是目前最成功的电化学储能器件。但锂的高成本和稀缺性使锂离子电池不适用于规模储,而钠和钾在地球上的含量较为丰富以及优异的物理化学性能被认为是目前最有潜力替代商用锂离子电池的研究方向,其中钾在某些电解液中的离子电导率比钠和钾都要高的多,因此在研究钠金属电池之后,钾金属电池也具有较强的研究价值。然而,在充放电过程中碱金属负极表面形成的金属枝晶会导致严重的安全以及循环性能下降等问题,这对电池的发展造成了极大的阻碍。而负极材料表面的固态电解质层(SEI)是抑制电化学循环过程中金属枝晶生长的关键。由于钠、钾金属以及生成的SEI十分敏感,目前常规手段并不能对其进行直接观测表征,因此使用冷冻电镜对此类样品进行表征是最为可行的一种方法。冷冻电镜可以使样品在液氮中转移,防止空气对样品的侵蚀,同时可以使样品保持在液氮温度下进行观测,配合超低剂量技术,可以有效降低电子束对样品的损伤,保证观测数据的真实性。所以通过冷冻电镜可以研究此类电池的真实失效机制并建立相应模型,从而针对性提出相关问题的解决办法。

在上述基础上,本文采用超低剂量冷冻电镜研究电池负极表面SEI的成分及其分布,探究不同电解液添加剂对于SEI成分结构的改变情况。

(1)在钠金属电池中,向电解液中添加的氟代碳酸乙烯酯(FEC)添加剂可以在钠金属负极表面首先形成一层均匀的氟化钠(NaF)膜,继而形成最外层为包含NaF的非晶层和内部为Na3PO4的层状结构,有效阻止电解液与负极的进一步反应,防止SEI增厚,最终提高电池性能。而不含FEC中生成的SEI极不稳定,并且电解液与钠金属负极会持续反应,厚度达百纳米,且内部的Na2CO3和Na3PO4分布杂乱无序。

(2)在钾电池中,首次使用超低剂量冷冻电镜成像技术得到了钾金属负极表面SEI的原子级图像,图像显示有机磷酸盐电解液生成的SEI薄且稳定,主要成分为KPO3、K2SO4和K2(SO2)3,电池性能也得到增强。而碳酸酯类电解液生成的SEI中含有大量如KHCO3和K4CO4的亚稳定物质,最终会耗尽电池中的钾源,导致电池性能下降。

通过超低剂量冷冻电镜,首次得到钠、钾电池内部SEI的原子级图像,解释了钠金属电池中FEC提高电池性能的原因,以及钾金属电池中不同电解液体系电池的失效机制。这为钠、钾电池中电解液的发展提供了新的信息,并有力地促进此领域未来走向实际应用的发展。

关键词
语种
中文
培养类别
独立培养
入学年份
2019-09
学位授予年份
2022-07
参考文献列表

[1] FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515.
[2] POIZOT P, DOLHEM F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices[J]. Energy & Environmental Science, 2011, 4(6): 2003-2019.
[3] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103.
[4] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[5] PAN H, HU Y-S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[6] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
[7] SVERDRUP H U. Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model[J]. Resources, Conservation and Recycling, 2016, 114: 112-129.
[8] GROSJEAN C, MIRANDA P H, PERRIN M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744.
[9] KANG H, LIU Y, CAO K, et al. Correction: Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(20): 7962-7962.
[10] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[11] LEE B, PAEK E, MITLIN D, et al. Sodium metal anodes: Emerging solutions to dendrite growth[J]. Chemical Reviews, 2019, 119(8): 5416-5460.
[12] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[13] LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761.
[14] PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An initial review of the status of electrode materials for potassium‐Ion Batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602911.
[15] KOMABA S, HASEGAWA T, DAHBI M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175.
[16] ASHER R C, A lamellar compound of sodium and graphite[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 10: 238-249.
[17] STEVENS D A, DAHN J R. The Mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803-A811.
[18] JIAN Z, LUO W, JI X. Carbon electrodes for k-Ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569.
[19] ZHAO J, ZOU X, ZHU Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44): 8103-8110.
[20] QIAN D, MA C, MORE K L, et al. Advanced analytical electron microscopy for lithium-ion batteries[J]. NPG Asia Materials, 2015, 7(6): e193-e193.
[21] FERNANDEZ-LEIRO R, SCHERES S H. Unravelling biological macromolecules with cryo-electron microscopy[J]. Nature, 2016, 537(7620): 339-346.
[22] DUBOCHET J. On the Development of Electron Cryo-microscopy (Nobel Lecture)[J]. Angewandte Chemie International Edition in English, 2018, 57(34): 10842-10846.
[23] MERK A, BARTESAGHI A, BANERJEE S, et al. Breaking cryo-EM resolution barriers to facilitate drug discovery[J]. Cell, 2016, 165(7): 1698-1707.
[24] GARCIA A, RAYA A M, MARISCAL M M, et al. Analysis of electron beam damage of exfoliated MoS(2) sheets and quantitative HAADF-STEM imaging[J]. Ultramicroscopy, 2014, 146: 33-38.
[25] ZHU Y, CISTON J, ZHENG B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy[J]. Nature Materials, 2017, 16(5): 532-536.
[26] GREER H F, ZHOU W. Electron diffraction and HRTEM imaging of beam-sensitive materials[J]. Crystallography Reviews, 2011, 17(3): 163-185.
[27] MEYER J C, EDER F, KURASCH S, et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene[J]. Physical Review Letters, 2012, 108(19): 196102.
[28] LIU D, SHADIKE Z, LIN R, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Advanced Materials, 2019, 31(28): e1806620.
[29] CHENG X-B, YAN C, ZHANG X-Q, et al. electronic and ionic channels in working interfaces of lithium metal anodes[J]. ACS Energy Letters, 2018, 3(7): 1564-1570.
[30] JU Z, NAI J, WANG Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature Communications, 2020, 11(1): 488.
[31] HABRAKEN W J, TAO J, BRYLKA L J, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate[J]. Nature Communications, 2013, 4: 1507.
[32] CHEN Y, ZHENG L, JOHNSON D C, et al. Reaction: potential impact of cryo-em technique on battery industry[J]. Chem, 2018, 4(10): 2254-2256.
[33] ZHANG W, KOCHOVSKI Z, LU Y, et al. Internal morphology-controllable self-assembly in poly(ionic liquid) nanoparticles[J]. ACS Nano, 2016, 10(8): 7731-7737.
[34] YANG Y, DAVIES D M, YIN Y, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 2050-2052.
[35] WANG C-M. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view[J]. Journal of Materials Research, 2014, 30(3): 326-339.
[36] ZHANG C, FENG Y, HAN Z, et al. Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: Progress and perspectives[J]. Advanced Materials, 2020, 32(27): e1903747.
[37] ZHANG H, LI C, ESHETU G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie International Edition in English, 2020, 59(2): 534-538.
[38] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561.
[39] LU Y, RONG X, HU Y-S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153.
[40] ZHANG X-Q, ZHAO C-Z, HUANG J-Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847.
[41] REN X, REN Z, LI Q, et al. Tailored plum pudding‐like co2p/sn encapsulated with carbon nanobox shell as superior anode materials for high‐performance sodium‐ion capacitors[J]. Advanced Energy Materials, 2019, 9(16): 1900091.
[42] BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources, 2018, 382: 176-178.
[43] WANG X, LI Y, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234.
[44] BERG E J, VILLEVIEILLE C, STREICH D, et al. Rechargeable batteries: Grasping for the limits of chemistry[J]. Journal of the Electrochemical Society, 2015, 162(14): A2468-A2475.
[45] LIU H, CHENG X-B, JIN Z, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003.
[46] CHENG X-B, ZHAO C-Z, YAO Y-X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96.
[47] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[48] WANG L, ZHOU Z, YAN X, et al. Engineering of lithium-metal anodes towards a safe and stable battery[J]. Energy Storage Materials, 2018, 14: 22-48.
[49] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science (Weinh), 2016, 3(3): 1500213.
[50] YUAN Y, WU F, CHEN G, et al. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203.
[51] VERMA P, MAIRE P, NOVáK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[52] KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867.
[53] BISWAL P, STALIN S, KLUDZE A, et al. Nucleation and early stage growth of li electrodeposits[J]. Nano Letters, 2019, 19(11): 8191-8200.
[54] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[55] LI B Q, CHEN X R, CHEN X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research (Wash D C), 2019, 2019: 4608940.
[56] AURBACH D, TALYOSEF Y, MARKOVSKY B, et al. Design of electrolyte solutions for Li and Li-ion batteries: a review[J]. Electrochimica Acta, 2004, 50(2-3): 247-254.
[57] LI T, ZHANG X-Q, SHI P, et al. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries[J]. Joule, 2019, 3(11): 2647-2661.
[58] YU X, MANTHIRAM A. Electrode–electrolyte interfaces in lithium-based batteries[J]. Energy & Environmental Science, 2018, 11(3): 527-543.
[59] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights[J]. Journal Of Physical Chemistry Letters, 2015, 6(22): 4653-4672.
[60] Li Y, Li Y, Cui Y, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy [J]. Science, 2017,358: 506-510.
[61] KO J, YOON Y S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?[J]. Ceramics International, 2019, 45(1): 30-49.
[62] URBONAITE S, POUX T, NOVáK P. Progress towards commercially viable li-s battery cells[J]. Advanced Energy Materials, 2015, 5(16): 1500118.
[63] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the li/s battery system[j]. Journal of the electrochemical society, 2004, 151(11):A1969-A1976.
[64] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
[65] MO F, RUAN J, SUN S, et al. Inside or Outside: Origin of lithium dendrite formation of all solid‐state electrolytes[J]. Advanced Energy Materials, 2019, 9(40):1902123.
[66] SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1): 900.
[67] LI W, LIU X, XIE Q, et al. Long-term cyclability of ncm-811 at high voltages in lithium-ion batteries: an In-Depth Diagnostic Study[J]. Chemistry of Materials, 2020, 32(18): 7796-7804.
[68] BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Physical Chemistry Chemical Physics, 2015, 17(14): 8670-8679.
[69] FAN L, ZHUANG H L, GAO L, et al. Regulating Li deposition at artificial solid electrolyte interphases[J]. Journal of Materials Chemistry A, 2017, 5(7): 3483-3492.
[70] LIU Y, LIU Q, XIN L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017, 2(7): 17083.
[71] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079.
[72] WAN J, SHEN F, LUO W, et al. In situ transmission electron microscopy observation of sodiation–desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode[J]. Chemistry of Materials, 2016, 28(18): 6528-6535.
[73] XU B, QI S, JIN M, et al. 2020 roadmap on two-dimensional materials for energy storage and conversion[J]. Chinese Chemical Letters, 2019, 30(12): 2053-2064.
[74] YU P, TANG W, WU F-F, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review[J]. Rare Metals, 2020, 39(9): 1019-1033.
[75] XU C, YANG Y, WANG H, et al. Electrolytes for lithium- and sodium-metal batteries[J]. Chemistry-an Asian Journal, 2020, 15(22): 3584-3598.
[76] CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Advanced Electronic Materials, 2016, 2(2): 1500246.
[77] DUGAS R, PONROUCH A, GACHOT G, et al. Na reactivity toward carbonate-Based Electrolytes: The Effect of FEC as Additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2333-A2339.
[78] LEE Y, LEE J, LEE J, et al. Fluoroethylene carbonate-based electrolyte with 1 m sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes[J]. ACS Appl Mater Interfaces, 2018, 10(17): 15270-15280.
[79] ZHENG X, FU H, HU C, et al. Toward a stable sodium metal anode in carbonate electrolyte: A compact, inorganic alloy interface[J]. Journal Of Physical Chemistry Letters, 2019, 10(4): 707-714.
[80] KIM Y J, LEE H, NOH H, et al. Enhancing the cycling stability of sodium metal electrodes by building an inorganic-organic composite protective layer[J]. ACS Appl Mater Interfaces, 2017, 9(7): 6000-6006.
[81] LI P, XU T, DING P, et al. Highly reversible na and k metal anodes enabled by carbon paper protection[J]. Energy Storage Materials, 2018, 15: 8-13.
[82] VALLMA C, BUCHHOLZ D, PASSERINI S, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature review, 2018,3(1083): 18013.
[83] DING J, ZHANG H, FAN W, et al. Review of emerging potassium-sulfur batteries[J]. Advanced Materials, 2020, 32(23): e1908007.
[84] MANARA A R, DOMINGUEZ-GIL B, PEREZ-VILLARES J M, et al. What follows refractory cardiac arrest: Death, extra-corporeal cardiopulmonary resuscitation (E-CPR), or uncontrolled donation after circulatory death?[J]. Resuscitation, 2016, 108: A3-A5.
[85] CHEN Y, KE X, CHENG Y, et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering[J]. Energy Storage Materials, 2020, 26: 56-64.
[86] SUN B, XIONG P, MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries[J]. Advanced Materials, 2020, 32(18): e1903891.
[87] XU Y-S, DUAN S-Y, SUN Y-G, et al. Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4334-4352.
[88] ZHAO Y, ADAIR K R, SUN X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11(10): 2673-2695.
[89] YE M, HWANG J Y, SUN Y K. A 4 V class potassium metal battery with extremely low overpotential[J]. ACS Nano, 2019, 13(8): 9306-9314.
[90] XIAO N, REN X, MCCULLOCH W D, et al. Potassium superoxide: A unique alternative for metal-air batteries[J]. Accounts of Chemical Research, 2018, 51(9): 2335-2343.
[91] LIU P, MITLIN D. Emerging potassium metal anodes: Perspectives on control of the electrochemical interfaces[J]. Accounts of Chemical Research, 2020, 53(6): 1161-1175.
[92] WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345.
[93] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[94] XIA H, ZHU X, LIU J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage[J]. Nature Communications, 2018, 9(1): 5100.
[95] ZHAO N, LI C, GUO X. Long-life Na-O(2) batteries with high energy efficiency enabled by electrochemically splitting NaO(2) at a low overpotential[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15646-15752.
[96] GAO H, XIN S, XUE L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4): 833-844.
[97] KOMABA S, ISHIKAWA T, YABUUCHI N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Appl Mater Interfaces, 2011, 3(11): 4165-4168.
[98] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
[99] LI Y, HUANG W, LI Y, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[100] JI L, GU M, SHAO Y, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage[J]. Advanced Materials, 2014, 26(18): 2901-2908.
[101] FONDARD J, IRISARRI E, COURRèGES C, et al. SEI composition on hard carbon in na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and Additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): 070526.
[102] PURUSHOTHAM U, TAKENAKA N, NAGAOKA M. Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries: a quantum chemical study[J]. RSC Advances, 2016, 6(69): 65232-65242.
[103] FRANKS L A, MEIDINGER A, BURGER A, et al. Multispectral x-ray and gamma spectrometer[C]. Hard X-Ray and Gamma-Ray Detector Physics V, 2004: 54-61.
[104] PARIMALAM B S, MACINTOSH A D, KADAM R, et al. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22733-22738.
[105] HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333.
[106] WINTER M, BARNETT B, XU K. Before li ion batteries[J]. Chem Rev, 2018, 118(23): 11433-11456.
[107] CHEN Q, DWYER C, SHENG G, et al. Imaging beam-sensitive materials by electron microscopy[J]. Advanced Materials, 2020, 32(16): e1907619.
[108] PELED E, GOLDNITSKY D, AREDEL G,et al. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J The Electrochem Soc, 1997, 144(208): L208-L210.
[109] ZHANG Q, WANG Z, ZHANG S, et al. Cathode materials for potassium-ion batteries: Current status and perspective[J]. Electrochemical Energy Reviews, 2018, 1(4): 625-658.
[110] ZHANG Q, MAO J, PANG W K, et al. Boosting the potassium storage performance of alloy‐based anode materials via electrolyte salt chemistry[J]. Advanced Energy Materials, 2018, 8(15): 1703288.
[111] PARENT L R, BAKALIS E, PROETTO M, et al. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy[J]. Accounts of Chemical Research, 2018, 51(1): 3-11.
[112] LIU L. Compression and polymorephism of potassium to 400 kbar[J]. Journal Of Physics And Chemistry Of Solids, 1986,11:1067-1072.
[113] LIU S, MAO J, ZHANG Q, et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries[J]. Angewandte Chemie International Edition in English, 2020, 59(9): 3638-3644.
[114] CAO X, REN X, ZOU L, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4(9): 796-805.
[115] CANCAREVIC Z P, SCHON J C, JANSEN M. Possible existence of alkali metal orthocarbonates at high pressure[J]. Chemistry, 2007, 13(26): 7330-7348.
[116] ZHENG J, ENGELHARD M H, MEI D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012.
[117] ABDEL M M, FADLY M, ALI A I, et al. Electrical conductivity and relative permittivity of KHCO3[J]. physical status solidi, 1994, 142: 69-74.
[118] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002.
[119] PAIER J, HIRSCHL R, MARSMAN M, et al. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set[J]. Journal of Chemical Physics, 2005, 122(23): 234102.
[120] XU Y, WU H, HE Y, et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy[J]. Nano Letters, 2020, 20(1): 418-425.
[121] XIAO N, GOURDIN G, WU Y. Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity[J]. Angewandte Chemie International Edition in English, 2018, 57(34): 10864-10867.
[122] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[j]. Chemistry of materials, 2015, 28(1): 266-273.
[123] GU S, XIAO N, WU F, et al. Chemical synthesis of k2s2 and k2s3 for probing electrochemical mechanisms in K–S batteries[J]. ACS Energy Letters, 2018, 3(12): 2858-2864.
[124] NICHOL A, ACKLAND G J. Property trends in simple metals: An empirical potential approach[J]. Physical Review B, 2016, 93(18): 184101.
[125] MAJURE D L, HASKINS R W, LEE N J, et al. Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) Simulations of the Effects of Chirality and Diameter on the Pullout Force in a Carbon Nanotube Bundle[C]. 2008 DoD HPCMP Users Group Conference, 2008: 201-207.
[126] HERRING C. Some Theorems on the Free Energies of Crystal Surfaces[J]. Physical Review, 1951, 82(1): 87-93.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336430
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
邹育澄. 电解液添加剂对碱金属电池中SEI作用的冷冻透射电镜研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930248-邹育澄-材料科学与工程(3663KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邹育澄]的文章
百度学术
百度学术中相似的文章
[邹育澄]的文章
必应学术
必应学术中相似的文章
[邹育澄]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。