中文版 | English
题名

FUNCTIONAL CLUSTERING ANALYSIS FOR TRAFFIC STATES FORECASTING

其他题名
基于函数型聚类分析的交通状态预测
姓名
姓名拼音
WANG Qingqing
学号
12032005
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
杨丽丽
导师单位
统计与数据科学系
论文答辩日期
2022-05-09
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

In the environment of rapid economic development, the number of various vehicles on urban roads is increasing year by year, and the incidence of traffic accidents is on the rise. In the field of traffic state prediction, few scholars discuss the functional data form of traffic data and consider how to study traffic problems based on this form. In addition, because the high-dimensional ecosystem formed by the behavior of traffic subjects, road network topology, and environment presents nonlinearity, randomness, and coupling, it is infeasible to use a model trained using a single sample to predict traffic state. The above problems increase the difficulty of accurately predicting traffic conditions.

Aiming at the traffic data types and temporal and the nonlinear problems of spatial characteristics, we propose a traffic prediction model based on functional clustering. Firstly, based on the smoothing method of the Fourier basis function, this paper makes an overall analysis of the road network data of two main roads in Shenzhen and selects the variable indicators of traffic road grouping evaluation. Secondly, by establishing a functional linear regression model, the multidimensional index set is transformed into a function varying with time, and then the coefficient matrix of each variable under all samples is obtained. Thirdly, the coefficient matrix is clustered by the K-means++ clustering model to obtain the category label of the variable under each sample. Then, the obtained category label matrix of different variables under each sample is clustered by quadratic Kmeans++, and the grouping of each road is obtained. Finally, combined with the classical time series model, the traffic speed of Shenzhen is predicted.

Through the comparative analysis of different indicators and dimensions under multiple models, the results show that the functional clustering prediction model proposed in this paper successfully identifies the roads with similar characteristics and improves the prediction accuracy of the average speed of vehicles passing through the road. By calculating the error volatility of 20 sections under different models, we verify that the functional clustering prediction model proposed in this paper is more robust than others. The model proposed in this paper can help the transportation administration effectively investigate and analyze the traffic operation status of the whole city, accurately find out the congested areas, and improve the traffic efficiency and the happiness index of people's lives through the implementation of directional road micro reconstruction.

其他摘要

在经济快速发展的大环境下,城市道路上各类车型的数量逐年增多,交通事故发生率呈上升趋势,人们迫切需要更加有效、精准的交通状态预测方法。对于交通状态预测的研究,很少有学者讨论交通数据具有的函数型数据形式以及考虑如何基于这种形式去研究交通问题。此外,由于交通主体行为、路网拓扑结构和环境三者所形成的高维生态系统呈现出非线性、随机性和耦合性,因此仅使用单一样本下交通数据的训练模型进行预测,预测的结果偏差较大。上述问题的出现加大了交通状态精准预测的困难性。

本文针对交通数据类型和时空特征的非线性问题,提出了一种函数型聚类的交通预测模型。首先,本文基于Fourier基函数的平滑方法对深圳市两条主干道的路网数据进行了整体分析并选择出交通道路分组评估的变量指标。其次,通过建立函数型线性回归模型,将多维指标集转换为随时间变化的函数,进而得到每个变量在所有样本下的系数矩阵。再次,通过K-means++聚类模型将系数矩阵聚类,得到每个样本下该变量的类别标签。然后,对已获得的关于每个样本下不同变量的类别标签矩阵进行二次K-means++聚类后,得到每条道路的分组。最后,结合经典的时间序列模型对深圳市交通速度进行预测。

通过对多个模型下不同指标、不同维度的对比分析,结果表明本文提出的函数型聚类预测模型成功识别了特征相似的道路,提高了车辆通过该道路平均速度的预测精度。通过计算不同模型下20个路段误差的波动性,我们验证了本文提出的函数型聚类预测模型比对比模型更加稳健。本文提出的模型可以帮助交通管理局对全市的交通运行状况进行有效排查分析,精确找出拥堵区域,通过实施定向道路微改造,从而提高通行效率,提升人民生活的幸福指数。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2020-09
学位授予年份
2022-07
参考文献列表

[1] MA T, ANTONIOU C, TOLEDO T. Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast[J]. Transportation Research Part C Emerging Technologies, 2020, 111(2020): 352-372.
[2] JAVED M A, ZEADALLY S, HAMIDA E B. Data analytics for cooperative intelligent transport systems[J]. Vehicular Communications, 2019, 15(1): 63-72.
[3] MA X, DAI Z, HE Z, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors (Basel, Switzerland), 2017, 17 (4): 818 .
[4] KAMARIANAKIS Y, GAO H O, PRASTACOS P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions[J]. Transportation Research Part C Emerging Technologies, 2010, 18(5): 821-840.
[5] DIA H. An object-oriented neural network approach to short-term traffic forecasting[J]. Eur. J. Oper. Res., 2001, 131(2): 253-261.
[6] ZHENG Z, SU D. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J]. Transportation Research Part C Emerging Technologies, 2014, 43: 143-157.
[7] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C, 2002, 10(4): 303-321.
[8] LIN X, HUANG Y. Short-term high-speed traffic flow prediction based on arima-garch-m model [J]. Wireless Personal Communications, 2021, 117(4): 3421-3430.
[9] CHEN C, HU J, MENG Q, et al. Short-time traffic flow prediction with arima-garch model[C]// 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011: 607-612.
[10] FUSCO G, COLOMBARONI C, ISAENKO N. Short-term speed predictions exploiting big data on large urban road networks[J]. Transportation Research Part C Emerging Technologies, 2016, 73(12): 183-201.
[11] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[12] GUO J, HUANG W, WILLIAMS B M. Adaptive kalman filter approach for stochastic shortterm traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 50-64.
[13] XU D W, WANG Y D, JIA L M, et al. Real-time road traffic state prediction based on arima and kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (2): 287-302 .
[14] TIAN B, WANG G, XU Z, et al. Communication delay compensation for string stability of cacc system using lstm prediction[J]. Vehicular Communications, 2021, 29: 100333 .
[15] ABDOOS M, BAZZAN A. Hierarchical traffic signal optimization using reinforcement learning and traffic prediction with long-short term memory[J]. Expert Systems with Applications, 2021, 171: 114580 .
[16] ZHANG H, SONG C, ZHANG J, et al. A multi-step airport delay prediction model based on spatial-temporal correlation and auxiliary features[J]. IET Intelligent Transport Systems, 2021, 15(7): 916-928.
[17] LIU H, TIAN H Q, LI Y F. Comparison of two new arima-ann and arima-kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98: 415-424.
[18] LI W, CHEN S, WANG X, et al. A hybrid approach for short-term traffic flow forecasting based on similarity identification[J]. Modern Physics Letters B, 2021, 35(13): 2150212 .
[19] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, PP(99): 1-11.
[20] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 922-929.
[21] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[J]. arXiv: Learning, 2018 .
[22] GE L, LI S, WANG Y, et al. Global spatial-temporal graph convolutional network for urban traffic speed prediction[J]. Applied Sciences, 2020, 10(4): 1509 .
[23] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. arXiv preprint arXiv: 1709.04875,2017 .
[24] SUN S, WU H, XIANG L. City-wide traffic flow forecasting using a deep convolutional neural network[J]. Sensors, 2020, 20(2): 421 .
[25] TAO L, GU Y, LU W, et al. An attention-based approach for traffic conditions forecasting considering spatial-temporal features[J]. 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE), 2020: 117-122.
[26] CHEN W, CHEN L, XIE Y, et al. Multi-range attentive bicomponent graph convolutional network for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3529-3536.
[27] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
[28] REN S, HAN L, LI Z, et al. Spatial-temporal traffic speed bands data analysis and prediction[J]. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017: 808-812.
[29] LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with conv-lstm[J]. 20179 th International Conference on Wireless Communications and Signal Processing (WCSP), 2017: 1-6 .
[30] FENG D, WU Z, ZHANG J, et al. Dynamic global-local spatial-temporal network for traffic speed prediction[J]. IEEE Access, 2020, 8: 209296-209307.
[31] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction[C]//Proceedings of the AAAI conference on artificial intelligence: volume 33. 2019: 5668-5675.
[32] DONG C, FU SHAO C, RICHARDS S H, et al. Flow rate and time mean speed predictions for the urban freeway network using state space models[J]. Transportation Research Part Cemerging Technologies, 2014, 43: 20-32.
[33] MA T, ZHOU Z, ANTONIOU C. Dynamic factor model for network traffic state forecast[J]. Transportation Research Part B: Methodological, 2018, 118: 281-317.
[34] ZHENG L, YANG J, CHEN L, et al. Dynamic spatial-temporal feature optimization with eri big data for short-term traffic flow prediction[J]. Neurocomputing, 2020, 412: 339-350.
[35] LOCANTORE N W, MARRON J S, SIMPSON D G, et al. Robust principal component analysis for functional data[J]. 1999, 8(1): 1-73.
[36] YINGGUO L, XIAOQUN H. Panel data clustering method and application[J]. Statistical study, 2010, 27(9): 6 .
[37] BOUVEYRON C, BRUNET C. Model-based clustering of high-dimensional data: A review [J]. Comput. Stat. Data Anal., 2014, 71: 52-78.
[38] BOULLÉ M. Functional data clustering via piecewise constant nonparametric density estimation[J]. Pattern Recognition, 2012, 45(12): 4389-4401.
[39] ABRAHAM C, CORNILLON P A, MATZNER-LØBER E, et al. Unsupervised curve clustering using b-splines[J]. Scandinavian journal of statistics, 2003, 30(3): 581-595.
[40] ROSSI F, CONAN-GUEZ B, GOLLI A E. Clustering functional data with the som algorithm [J]. 2004: 305-312.
[41] SERBAN N, WASSERMAN L. Cats: clustering after transformation and smoothing[J]. Journal of the American Statistical Association, 2005, 100(471): 990-999.
[42] GARCÍA-ESCUDERO L A, GORDALIZA A. A proposal for robust curve clustering[J]. Journal of Classification, 2005, 22(2): 185-201.
[43] KAYANO M, DOZONO K, KONISHI S. Functional cluster analysis via orthonormalized gaussian basis expansions and its application[J]. Journal of Classification, 2010, 27(2): 211-230.
[44] JIE, PENG, HANS-GEORG, et al. Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[J]. The Annals of Applied Statistics, 2008, 2(3): 1056-1077 .
[45] COFFEY N, HINDE J, HOLIAN E. Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data[J]. Computational Statistics & Data Analysis, 2014, 71(3): 14-29.
[46] GIACOFCI M, LAMBERT-LACROIX S, MAROT G, et al. Wavelet-based clustering for mixedeffects functional models in high dimension[J]. Biometrics, 2013, 69(1): 31-40.
[47] JIE W, HUANG K, WANG H, et al. A hierarchy cluster method for functional data[J]. Journal of Beijing University of Aeronautics and Astronautics(Social Sciences Edition), 2011, 28(5): 839-844.
[49] WANG D Q, LIU X W, ZHU J P. Deeper extension of adaptive weighting functional clustering [J]. Journal of Applied Statistics and Management, 2016, 35(1): 81-88.
[50] PIGOLI D, SANGALLI L M. Wavelets in functional data analysis: estimation of multidimensional curves and their derivatives[J]. Computational Statistics & Data Analysis, 2012, 56(6): 1482-1498.
[51] HUBERT M, ROUSSEEUW P, SEGAERT P. Multivariate functional outlier detection[J/OL]. Statistical Methods and Applications, 2015, 24: 177-202. DOI: 10.1007/s10260-015-0297-8.
[52] SCHMUTZ A, JACQUES J, BOUVEYRON C, et al. Clustering multivariate functional data in group-specific functional subspaces[J]. Computational Statistics, 2020, 35(3): 1101-1131.
[53] RAMSAY J O. When the data are functions[J]. Psychometrika, 1982, 47(4): 379-396.
[54] YIZHI C. Some methods and applications of functional data analysis[D]. Zhejiang Gongshang University, 2011.
[55] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[C]//SODA '07. 2007 .
[56] MURAKI E, RAMSAY J O, SILVERMAN B W. Functional data analysis[J]. Journal of Educational and Behavioral Statistics, 1999, 24: 101 .
[57] BUN M J, HARRISON T D. Ols and iv estimation of regression models including endogenous interaction terms[J]. Econometric Reviews, 2019, 38(7): 814-827.
[58] CAI L, JANOWICZ K, MAI G, et al. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755.
[59] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with 1 \mathrm{stm}[\mathrm{J}]. Neural computation, 2000, 12(10): 2451-2471.
[60] ZHU J Z, CAO J X, ZHU Y. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 47: 139-154.
[61] CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
[62] QINSHU C. Commuting speed is the best in "north, shanghai, guangzhou and shenzhen" [EB/OL]. (2022-01-28)
[2022-03-08]. https://gd.ifeng.com/c/8D8YeMfWs7s.htm.

所在学位评定分委会
统计与数据科学系
国内图书分类号
O212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340027
专题理学院_统计与数据科学系
推荐引用方式
GB/T 7714
Wang QQ. FUNCTIONAL CLUSTERING ANALYSIS FOR TRAFFIC STATES FORECASTING[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032005-王倩倩-统计与数据科学(3531KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王倩倩]的文章
百度学术
百度学术中相似的文章
[王倩倩]的文章
必应学术
必应学术中相似的文章
[王倩倩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。