[1] MA T, ANTONIOU C, TOLEDO T. Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast[J]. Transportation Research Part C Emerging Technologies, 2020, 111(2020): 352-372.
[2] JAVED M A, ZEADALLY S, HAMIDA E B. Data analytics for cooperative intelligent transport systems[J]. Vehicular Communications, 2019, 15(1): 63-72.
[3] MA X, DAI Z, HE Z, et al. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors (Basel, Switzerland), 2017, 17 (4): 818 .
[4] KAMARIANAKIS Y, GAO H O, PRASTACOS P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions[J]. Transportation Research Part C Emerging Technologies, 2010, 18(5): 821-840.
[5] DIA H. An object-oriented neural network approach to short-term traffic forecasting[J]. Eur. J. Oper. Res., 2001, 131(2): 253-261.
[6] ZHENG Z, SU D. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J]. Transportation Research Part C Emerging Technologies, 2014, 43: 143-157.
[7] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C, 2002, 10(4): 303-321.
[8] LIN X, HUANG Y. Short-term high-speed traffic flow prediction based on arima-garch-m model [J]. Wireless Personal Communications, 2021, 117(4): 3421-3430.
[9] CHEN C, HU J, MENG Q, et al. Short-time traffic flow prediction with arima-garch model[C]// 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011: 607-612.
[10] FUSCO G, COLOMBARONI C, ISAENKO N. Short-term speed predictions exploiting big data on large urban road networks[J]. Transportation Research Part C Emerging Technologies, 2016, 73(12): 183-201.
[11] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[12] GUO J, HUANG W, WILLIAMS B M. Adaptive kalman filter approach for stochastic shortterm traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 50-64.
[13] XU D W, WANG Y D, JIA L M, et al. Real-time road traffic state prediction based on arima and kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (2): 287-302 .
[14] TIAN B, WANG G, XU Z, et al. Communication delay compensation for string stability of cacc system using lstm prediction[J]. Vehicular Communications, 2021, 29: 100333 .
[15] ABDOOS M, BAZZAN A. Hierarchical traffic signal optimization using reinforcement learning and traffic prediction with long-short term memory[J]. Expert Systems with Applications, 2021, 171: 114580 .
[16] ZHANG H, SONG C, ZHANG J, et al. A multi-step airport delay prediction model based on spatial-temporal correlation and auxiliary features[J]. IET Intelligent Transport Systems, 2021, 15(7): 916-928.
[17] LIU H, TIAN H Q, LI Y F. Comparison of two new arima-ann and arima-kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98: 415-424.
[18] LI W, CHEN S, WANG X, et al. A hybrid approach for short-term traffic flow forecasting based on similarity identification[J]. Modern Physics Letters B, 2021, 35(13): 2150212 .
[19] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, PP(99): 1-11.
[20] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 922-929.
[21] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[J]. arXiv: Learning, 2018 .
[22] GE L, LI S, WANG Y, et al. Global spatial-temporal graph convolutional network for urban traffic speed prediction[J]. Applied Sciences, 2020, 10(4): 1509 .
[23] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. arXiv preprint arXiv: 1709.04875,2017 .
[24] SUN S, WU H, XIANG L. City-wide traffic flow forecasting using a deep convolutional neural network[J]. Sensors, 2020, 20(2): 421 .
[25] TAO L, GU Y, LU W, et al. An attention-based approach for traffic conditions forecasting considering spatial-temporal features[J]. 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE), 2020: 117-122.
[26] CHEN W, CHEN L, XIE Y, et al. Multi-range attentive bicomponent graph convolutional network for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3529-3536.
[27] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
[28] REN S, HAN L, LI Z, et al. Spatial-temporal traffic speed bands data analysis and prediction[J]. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017: 808-812.
[29] LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with conv-lstm[J]. 20179 th International Conference on Wireless Communications and Signal Processing (WCSP), 2017: 1-6 .
[30] FENG D, WU Z, ZHANG J, et al. Dynamic global-local spatial-temporal network for traffic speed prediction[J]. IEEE Access, 2020, 8: 209296-209307.
[31] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction[C]//Proceedings of the AAAI conference on artificial intelligence: volume 33. 2019: 5668-5675.
[32] DONG C, FU SHAO C, RICHARDS S H, et al. Flow rate and time mean speed predictions for the urban freeway network using state space models[J]. Transportation Research Part Cemerging Technologies, 2014, 43: 20-32.
[33] MA T, ZHOU Z, ANTONIOU C. Dynamic factor model for network traffic state forecast[J]. Transportation Research Part B: Methodological, 2018, 118: 281-317.
[34] ZHENG L, YANG J, CHEN L, et al. Dynamic spatial-temporal feature optimization with eri big data for short-term traffic flow prediction[J]. Neurocomputing, 2020, 412: 339-350.
[35] LOCANTORE N W, MARRON J S, SIMPSON D G, et al. Robust principal component analysis for functional data[J]. 1999, 8(1): 1-73.
[36] YINGGUO L, XIAOQUN H. Panel data clustering method and application[J]. Statistical study, 2010, 27(9): 6 .
[37] BOUVEYRON C, BRUNET C. Model-based clustering of high-dimensional data: A review [J]. Comput. Stat. Data Anal., 2014, 71: 52-78.
[38] BOULLÉ M. Functional data clustering via piecewise constant nonparametric density estimation[J]. Pattern Recognition, 2012, 45(12): 4389-4401.
[39] ABRAHAM C, CORNILLON P A, MATZNER-LØBER E, et al. Unsupervised curve clustering using b-splines[J]. Scandinavian journal of statistics, 2003, 30(3): 581-595.
[40] ROSSI F, CONAN-GUEZ B, GOLLI A E. Clustering functional data with the som algorithm [J]. 2004: 305-312.
[41] SERBAN N, WASSERMAN L. Cats: clustering after transformation and smoothing[J]. Journal of the American Statistical Association, 2005, 100(471): 990-999.
[42] GARCÍA-ESCUDERO L A, GORDALIZA A. A proposal for robust curve clustering[J]. Journal of Classification, 2005, 22(2): 185-201.
[43] KAYANO M, DOZONO K, KONISHI S. Functional cluster analysis via orthonormalized gaussian basis expansions and its application[J]. Journal of Classification, 2010, 27(2): 211-230.
[44] JIE, PENG, HANS-GEORG, et al. Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[J]. The Annals of Applied Statistics, 2008, 2(3): 1056-1077 .
[45] COFFEY N, HINDE J, HOLIAN E. Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data[J]. Computational Statistics & Data Analysis, 2014, 71(3): 14-29.
[46] GIACOFCI M, LAMBERT-LACROIX S, MAROT G, et al. Wavelet-based clustering for mixedeffects functional models in high dimension[J]. Biometrics, 2013, 69(1): 31-40.
[47] JIE W, HUANG K, WANG H, et al. A hierarchy cluster method for functional data[J]. Journal of Beijing University of Aeronautics and Astronautics(Social Sciences Edition), 2011, 28(5): 839-844.
[49] WANG D Q, LIU X W, ZHU J P. Deeper extension of adaptive weighting functional clustering [J]. Journal of Applied Statistics and Management, 2016, 35(1): 81-88.
[50] PIGOLI D, SANGALLI L M. Wavelets in functional data analysis: estimation of multidimensional curves and their derivatives[J]. Computational Statistics & Data Analysis, 2012, 56(6): 1482-1498.
[51] HUBERT M, ROUSSEEUW P, SEGAERT P. Multivariate functional outlier detection[J/OL]. Statistical Methods and Applications, 2015, 24: 177-202. DOI: 10.1007/s10260-015-0297-8.
[52] SCHMUTZ A, JACQUES J, BOUVEYRON C, et al. Clustering multivariate functional data in group-specific functional subspaces[J]. Computational Statistics, 2020, 35(3): 1101-1131.
[53] RAMSAY J O. When the data are functions[J]. Psychometrika, 1982, 47(4): 379-396.
[54] YIZHI C. Some methods and applications of functional data analysis[D]. Zhejiang Gongshang University, 2011.
[55] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[C]//SODA '07. 2007 .
[56] MURAKI E, RAMSAY J O, SILVERMAN B W. Functional data analysis[J]. Journal of Educational and Behavioral Statistics, 1999, 24: 101 .
[57] BUN M J, HARRISON T D. Ols and iv estimation of regression models including endogenous interaction terms[J]. Econometric Reviews, 2019, 38(7): 814-827.
[58] CAI L, JANOWICZ K, MAI G, et al. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755.
[59] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with 1 \mathrm{stm}[\mathrm{J}]. Neural computation, 2000, 12(10): 2451-2471.
[60] ZHU J Z, CAO J X, ZHU Y. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 47: 139-154.
[61] CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
[62] QINSHU C. Commuting speed is the best in "north, shanghai, guangzhou and shenzhen" [EB/OL]. (2022-01-28)
[2022-03-08]. https://gd.ifeng.com/c/8D8YeMfWs7s.htm.
修改评论