[1] EVERS S, NAZAR L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013, 46(5): 1135-1143.
[2] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[3] CHEN Y, WANG T, TIAN H, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): 2003666.
[4] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O-2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[5] ZHAO Y, WANG Z, ZHAO X, et al. A nitrogen-doped carbon matrix aiming at inhibiting polysulfide shuttling for lithium-sulfur batteries[J]. Energy & Fuels, 2020, 34(8): 10188-10195.
[6] PENG H-J, HUANG J-Q, CHENG X-B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700260.
[7] ROSENMAN A, MARKEVICH E, SALITRA G, et al. Review on Li-sulfur battery systems: an integral perspective[J]. Advanced Energy Materials, 2015, 5(16): 1500212.
[8] ZHANG S S. Liquid wlectrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.
[9] CHENG X-B, ZHANG R, ZHAO C-Z, et al. Toward safe lithium metal anode in rechargeable batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[10] SCHUSTER J, HE G, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte ChemieInternational Edition, 2012, 51(15): 3591-3595.
[11] ZHANG X L, ZHANG P, ZHANG S J, et al. Confining sulfur in intact freestanding scaffold of yolk-shell nanofibers with high sulfur content for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 51: 378-387.
[12] LIU Y T, LIU S, LI G R, et al. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery[J]. Advanced Science, 2020, 7(12): 1903693.
[13] ZHANG Y, ZHAO Y, KONAROV A, et al. A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries[J]. Journal of Power Sources, 2013, 241: 517-521.
[14] WU F, CHEN J, CHEN R, et al. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2011, 115(13): 6057-6063.
[15] WANG J, CHEN J, KONSTANTINOV K, et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochimica Acta, 2006, 51(22): 4634-4638.
[16] LIU Y, YANG D, YAN W, et al. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries[J]. Iscience, 2019, 19: 316-325.
[17] WANG K, ZHAO T, ZHANG N X, et al. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets[J]. Nanoscale, 2021, 13(39): 16690 -16695.
[18] WANG T, ZHANG Q S, ZHONG J, et al. 3D Holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries[J]. Advanced Energy Materials, 2021, 11(16): 2100448.
[19] LI C, LIU R, XIAO Y, et al. Recent progress of separators in lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 40: 439-460.
[20] LEI T Y, CHEN W, HU Y, et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(32): 1802441.
[21] CHUNG S-H, MANTHIRAM A. High-performance Li-S batteries with an ultralightweight MWCNT-coated separator[J]. Journal of Physical Chemistry Letters, 2014, 5(11): 1978-1983.
[22] CHOI C, KIM D-W. Silica-templated hierarchically porous carbon modified separators for lithium-sulfur batteries with superior cycling stabilities[J]. Journal of Power Sources,2020, 448: 227462.
[23] ZHAO Y, YE Y, WU F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2019, 31(12): 1806532.
[24] ESHETU G G, JUDEZ X, LI C, et al. Lithium azide as an electrolyte additive for allsolid-state lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2017, 56(48): 15368-15372.
[25] NANDA S, BHARGAV A, MANTHIRAM A. anode-free, lean-electrolyte lithiumsulfur batteries enabled by tellurium-stabilized lithium deposition[J]. Joule, 2020, 4(5): 1121-1135.
[26] WU F, LEE J T, NITTA N, et al. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: mechanisms of performance nhancement[J]. Advanced Materials, 2015, 27(1): 101-108.
[27] LIU M, REN Y X, JIANG H R, et al. An efficient Li 2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive[J]. Nano Energy, 2017, 40: 240 -247.
[28] GUO Y, LI H, ZHAI T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29(29): 1700007
[29] JIN Q, ZHANG X T, GAO H, et al. Novel LixSiSy/nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li-S batteries[J]. Journal of Materials Chemistry A, 2020, 8(18): 8979-8988.
[30] CHEN D D, HUANG S, ZHONG L, et al. In Situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2020, 30(7): 1907717.
[31] KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756.
[32] REN Y X, ZENG L, JIANG H R, et al. Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries[J]. Nature Communications, 2019, 10: 3249.
[33] WANG L L, YE Y S, CHEN N, et al. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1800919.
[34] SHIM J, STRIEBEL K A, CAIRNS E J. The lithium/sulfur rechargeable cell - effects of electrode composition and solvent on cell performance[J]. Journal of the Electrochemical Society, 2002, 149(10): A1321-A1325.
[35] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011, 50(26): 5904-5908.
[36] ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithiummetal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2018, 57(51): 16732-16736.
[37] ZU C X, AZIMI N, ZHANG Z C, et al. Insight into lithium-metal anodes in lithiumsulfur batteries with a fluorinated ether electrolyte[J]. Journal of Materials Chemistry A, 2015, 3(28): 14864-14870.
[38] AZIMI N, WENG W, TAKOUDIS C, et al. Improved performance of lithium-sulfur battery with fluorinated electrolyte[J]. Electrochemistry Communications, 2013, 37: 96-99.
[39] LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nature Communications, 2018, 9: 4509.
[40] BARCHASZ C, LEPRETRE J C, PATOUX S, et al. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries[J]. Electrochimica Acta, 2013, 89: 737-743.
[41] SHI L, LIU Y, WANG W, et al. High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate -based electrolyte[J]. Journal of Alloys and Compounds, 2017, 723: 974-982.
[42] CHEN Z, ZHOU J, GUO Y, et al. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochimica Acta, 2018, 282: 555 -562.
[43] FAN L, DENG N, YAN J, et al. The recent research status quo and the prospect of electrolytes for lithium sulfur batteries[J]. Chemical Engineering Journal, 2019, 369: 874-897.
[44] PARK J-W, YAMAUCHI K, TAKASHIMA E, et al. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries[J]. Journal of Physical Chemistry C, 2013, 117(9): 4431-4440.
[45] LANG S-Y, XIAO R-J, GU L, et al. Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics[J]. Journal of the American Chemical Society, 2018, 140(26): 8147-8155.
[46] LANG S-Y, SHI Y, GUO Y-G, et al. High-temperature formation of a functional film at the cathode/electrolyte interface in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2017, 56(46): 14433-14437.
[47] VON ASPERN N, ROESCHENTHALER G V, WINTER M, et al. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes[J]. Angewandte Chemie-International Edition, 2019, 58(45): 15978-16000.
[48] SUO L M, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for highenergy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[49] BELL J, YE R, PATINO D, et al. Plateau targeted conditioning: An additive -free approach towards robust SEI formation in Li-S batteries for enhanced capacity and cycle life[J]. Nano Energy, 2018, 49: 498-507.
[50] XU Z, YANG J, QIAN J, et al. Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries[J]. Energy Storage Materials, 2019, 20: 388-394.
[51] ZHANG L, LING M, FENG J, et al. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 11: 24-29.
[52] ZHANG X, LI J, GAO C, et al. Promoting the conversion of Li 2S by functional additives phenyl diselenide in lithium-sulfur batteries[J]. Journal of Power Sources, 2021, 482: 228967.
[53] ZHENG D, YANG X-Q, QU D. Reaction between lithium anode and polysulfide ions in a lithium-sulfur battery[J]. Chemsuschem, 2016, 9(17): 2348-2350.
[54] ZHANG H, GEBRESILASSIE ESHETU G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives[J]. Angewandte Chemie-International Edition, 2018, 57(46): 15002-15027.
[55] LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: 7436.
[56] WAHYUDI W, LADELTA V, TSETSERIS L, et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries[J]. Advanced Functional Materials, 2021, 31(23): 2101593.
[57] DAI H, XI K, LIU X, et al. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical Society, 2018, 140(50): 17515-17521.
[58] DING F, XU W, CHEN X, et al. Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of Physical Chemistry C, 2014, 118(8): 4043-4049.
[59] DONG L, LIU J, CHEN D, et al. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. Acs Nano, 2019, 13(12): 14172-14181.
[60] TSAO Y C, LEE M, MILLER E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019, 3(3): 872-884.
[61] BHARGAV A, HE J, GUPTA A, et al. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
[62] ZHAO M, LI B-Q, PENG H-J, et al. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angewandte Chemie-International Edition, 2020, 59(31): 12636-12652.
[63] CUISINIER M, CABELGUEN P E, EVERS S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013, 4(19): 3227-3232.
[64] ELAZARI R, SALITRA G, TALYOSEF Y, et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy[J]. Journal of the Electrochemical Society, 2010, 157(10): A1131-A1138.
[65] ZHAO M, LI B Q, PENG H J, et al. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and Opportunities[J]. Angew Chem Int Ed Engl, 2020, 59(31): 12636-12652.
[66] JIN Q, QI X Q, YANG F Y, et al. The failure mechanism of lithium-sulfur batteries under lean-ether-electrolyte conditions[J]. Energy Storage Materials, 2021, 38: 255-261.
[67] SHIN H, BAEK M, GUPTA A, et al. Recent progress in high donor electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(27): 2001456.
[68] GUPTA A, BHARGAV A, MANTHIRAM A. Highly solvating electrolytes for lithiumsulfur batteries[J]. Advanced Energy Materials, 2019, 9(6): 1803096.
[69] ZOU Q L, LU Y C. Solvent-Dictated Lithium sulfur redox reactions: An operando UVvis spectroscopic study[J]. Journal of Physical Chemistry Letters, 2016, 7(8): 1518-1525.
[70] BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(52): 2005022.
[71] CHU H, JUNG J, NOH H, et al. Unraveling the dual functionality of high-donornumber anion in lean-electrolyte lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(21): 2000493.
[72] CHU H, NOH H, KIM Y-J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10: 188.
[73] PAN H, HAN K S, ENGELHARD M H, et al. Addressing passivation in lithium-sulfur battery under lean electrolyte condition[J]. Advanced Functional Materials, 2018, 28(38):1707234.
[74] XU N, QIAN T, LIU X, et al. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates[J]. Nano Letters, 2017, 17(1): 538-543.
[75] YE H, SUN J, LIM X F, et al. Mediator-assisted catalysis of polysulfide conversion for high-loading lithium-sulfur batteries operating under the lean electrolyte condition [J]. Energy Storage Materials, 2021, 38: 338-343.
[76] ZHENG J, FAN X, JI G, et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries[J]. Nano Energy, 2018, 50: 431-440.
修改评论