[1] CHU S, MAJUMDAR. A Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
[2] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. J Power Sources, 2013, 226:272-288.
[3] WANG Q, JIANG L, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55:93-114.
[4] DI LECCE D, CARBONE L, GANCITANO V, et al. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes[J]. J Power Sources, 2016, 334:146-153.
[5] HESS S, WOHLFAHRT-MEHRENS M, WACHTLER M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements[J]. J Electrochem Soc, 2015, 162(2):A3084-A3097.
[6] ARYA A, SHARMA A L. Polymer electrolytes for lithium ion batteries: A critical study[J]. Ionics, 2017, 23(3):497-540.
[7] AMICI J, ASINARI P, AYERBE E, et al. A roadmap for transforming research to invent the batteries of the future designed within the european large scale research initiative battery 2030+[J]. Adv Energy Mater, 2022, DOI:10.1002/aenm.202102785.
[8] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1):19-29.
[9] LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. J Mater Chem A, 2016, 4(26):10038-10069.
[10] PANG Y, PAN J, YANG J, et al. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review[J]. Electrochem Energy R, 2021, 4(2):169-193.
[11] MURALI A, SAKAR M, PRIYA S, et al. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review[J]. Mater Lett, 2022, DOI:10.1016/j.matlet.2022.131764.
[12] CHENG Z, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Mater, 2021, 34:388-416.
[13] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23):8790-8839.
[14] ZHAO Y, BAI Y, LI W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries[J]. Chem Mater, 2020, 32(16):6811-6830.
[15] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Mater, 2016, 5:139-164.
[16] ARMAND M B. Intercalation electrodes [M]. Springer US. 1980: 145-161.
[17] MEGAHED S, SCROSATI B. Lithium-ion rechargeable batteries[J]. J Power Sources, 1994, 51(1):79-104.
[18] 刘松, 侯宏英, 胡文, 等. 锂离子电池集流体的研究进展[J]. 硅酸盐通报, 2015, 34(09):2562-2568.
[19] LV F, WANG Z, SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441:227175.
[20] JANEK J, ZEIER W G A. solid future for battery development[J]. Nat Energy, 2016, 1(9):16141.
[21] LIU Y, XU B, ZHANG W, et al. Composition modulation and structure design of inorganic‐in‐polymer composite solid electrolytes for advanced lithium batteries[J]. Small, 2020, 16(15):1902813.
[22] GUO Y, LI H, ZHAI T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv Mater, 2017, 29(29):1700007.
[23] HU M, PANG X, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. J Power Sources, 2013, 237:229-242.
[24] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[25] CHOUDHURY S, STALIN S, VU D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nat Commun, 2019, 10(1):4398.
[26] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(04):331-341.
[27] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Mater, 2018, 30(17):1705702.
[28] DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Mat Sci Eng R, 2019, 136:27-46.
[29] YAJIMA T, HINUMA Y, HORI S, et al. Correlated Li-ion migration in the superionic conductor Li10GeP2S12[J]. J Mater Chem A, 2021, 9(18):11278-11284.
[30] OH K, CHANG D, LEE B, et al. Native defects in Li10GeP2S12 and their effect on lithium diffusion[J]. Chem Mater, 2018, 30(15):4995-5004.
[31] LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nat Energy, 2020, 5(4):299-308.
[32] KOTOBUKI M, KANAMURA K. Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte[J]. Ceram Int, 2013, 39(6):6481-6487.
[33] WU J-F, CHEN E-Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Appl Mater Interfaces, 2017, 9(2):1542-1552.
[34] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41):7778-7781.
[35] AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chem Lett, 2011, 40(1):60-62.
[36] HAYAMIZU K, TERADA Y, KATAOKA K, et al. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO–Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2019, 150(19):194502.
[37] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14-16):911-916.
[38] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11):589.
[39] ARMAND M B, CHABAGNO J M, DUCLOT M J. Polyethers as solid electrolytes[C]. Fast Ion Transp. Solids: Electrodes Electrolytes, 1979:131-136.
[40] BERTHIER C, GORECKI W, MINIER M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1):91-95.
[41] AN Y, HAN X, LIU Y, et al. Progress in solid polymer electrolytes for lithium‐ion batteries and beyond[J]. Small, 2022, 18:2103617.
[42] XU L, LU Y, ZHAO C Z, et al. Toward the scale‐up of solid‐state lithium metal batteries: The gaps between lab‐level cells and practical large‐format batteries[J]. Adv Energy Mater, 2021, 11(4):2002360.
[43] LI M, WANG C, CHEN Z, et al. New concepts in electrolytes[J]. Chem Rev, 2020, 120(14):6783-6819.
[44] XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. J Mater Chem A, 2015, 3(38):19218-19253.
[45] TOMINAGA Y, SHIMOMURA T, NAKAMURA M. Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes[J]. Polymer, 2010, 51(19):4295-4298.
[46] 董甜甜, 张建军, 柴敬超, 等. 聚碳酸酯基固态聚合物电解质的研究进展[J]. 高分子学报, 2017, 06:906-921.
[47] SMITH M J, SILVA M M, CERQUEIRA S, et al. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate)[J]. Solid State Ionics, 2001, 140(3):345-351.
[48] 张恒源, 刘建叶, 祁丽亚, 等. PPC/LAGP固态复合电解质制备与性能[J]. 工程塑料应用, 2020, 48(4):31-36.
[49] WANG L, HU S, SU J, et al. Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2019, 11(45):42715-42721.
[50] XU J, FENG E, SONG J. Renaissance of aliphatic polycarbonates: New techniques and biomedical applications[J]. J Appl Polym Sci, 2014, 131(5): 39822.
[51] TSUCHIDA E, OHNO H, TSUNEMI K, et al. Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate[J]. Solid State Ionics, 1983, 11(3):227-233.
[52] LI Y-J, FAN C-Y, ZHANG J-P, et al. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Dalton Trans, 2018, 47(42):14932-14937.
[53] SUNDARAMAHALINGAM K, VANITHA D, NALLAMUTHU N, et al. Electrical properties of lithium bromide poly ethylene oxide / poly vinyl pyrrolidone polymer blend elctrolyte[J]. Physica B, 2019, 553:120-126.
[54] BAO J, QU X, QI G, et al. Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries[J]. Solid State Ionics, 2018, 320:55-63.
[55] TANAKA R, SAKURAI M, SEKIGUCHI H, et al. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends[J]. Electrochim Acta, 2001, 46(10):1709-1715.
[56] ARYA A, SHARMA A L. Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes[J]. J Mater Sci: Mater Electron, 2018, 29(20):17903-17920.
[57] ORIHARA K, YONEKURA H. Nonlinear effects on the ionic conductivity of poly(ethylene oxide)/uthium perchlorate complexes caused by the blending of poly(vinyl acetate)[J]. J Macromol Sci A, 1990, 27(9-11):1217-1223.
[58] ABRAHAM K M, ALAMGIR M. Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries[J]. Chem Mater, 1991, 3(2):339-348.
[59] MUNICHANDRAIAH N, SIVASANKAR G, SCANLON L G, et al. Characterization of PEO-PAN hybrid solid polymer electrolytes[J]. J Appl Polym Sci, 1997, 65(11):2191-2199.
[60] ACOSTA J L, MORALES E. Structural, morphological and electrical characterization of polymer electrolytes based on PEO/PPO blends[J]. Solid State Ionics, 1996, 85(1):85-90.
[61] JACOB M M E, PRABAHARAN S R S, RADHAKRISHNA S. Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes[J]. Solid State Ionics, 1997, 104(3):267-276.
[62] WHANG W-T, YANG L-H, FAN Y-W. Effect of poly(vinylidene fluoride) on the ionic conductivity and morphology of PEO–salt polymer electrolytes[J]. J Appl Polym Sci, 1994, 54(7):923-933.
[63] ZHANG J, YUE L, HU P, et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Sci Rep-UK, 2014, 4(1):6272.
[64] LI Z, MOGENSEN R, MINDEMARK J, et al. Ion-conductive and thermal properties of a synergistic poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte[J]. Macromol Rapid Commun, 2018, 39(14):1800146.
[65] SINGH M, ODUSANYA O, WILMES G M, et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007, 40(13):4578-4585.
[66] GOMEZ E D, PANDAY A, FENG E H, et al. Effect of ion distribution on conductivity of block copolymer electrolytes[J]. Nano Lett, 2009, 9(3):1212-1216.
[67] JO G, AHN H, PARK M J. Simple route for tuning the morphology and conductivity of polymer electrolytes: One end functional group is enough[J]. ACS Macro Lett, 2013, 2(11):990-995.
[68] JO G, JEON H, PARK M J. Synthesis of polymer electrolytes based on poly(ethylene oxide) and an anion-stabilizing hard polymer for enhancing conductivity and cation transport[J]. ACS Macro Lett, 2015, 4(2):225-230.
[69] PRZYŁUSKI J, WIECZOREK W. Copolymer electrolytes[J]. Solid State Ionics, 1992, 53-56:1071-1076.
[70] BANNISTER D J, DAVIES G R, WARD I M, et al. Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3[J]. Polymer, 1984, 25(11):1600-1602.
[71] MATSUMOTO M, UNO T, KUBO M, et al. Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties[J]. Ionics, 2013, 19(4):615-622.
[72] UCHIYAMA R, KUSAGAWA K, HANAI K, et al. Development of dry polymer electrolyte based on polyethylene oxide with co-bridging agent crosslinked by electron beam[J]. Solid State Ionics, 2009, 180(2):205-211.
[73] WALKER C N, VERSEK C, TOUMINEN M, et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Lett, 2012, 1(6):737-741.
[74] ZHANG Y, LU W, CONG L, et al. Cross-linking network based on poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery[J]. J Power Sources, 2019, 420:63-72.
[75] ZHENG Y, LI X, LI C Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Mater, 2020, 29:42-51.
[76] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692):456-458.
[77] ZHU Y, CAO J, CHEN H, et al. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries[J]. J Mater Chem A, 2019, 7(12):6832-6839.
[78] FANG R, XU B, GRUNDISH N S, et al. Li2S6‐integrated PEO‐based polymer electrolytes for all‐solid‐state lithium‐metal batteries[J]. Angew Chem Int Ed, 2021, 60(32):17701-17706.
[79] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun (Camb), 2014, 50(34):4448-4450.
[80] KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochem Commun, 2016, 66:46-48.
[81] HE Z, CHEN L, ZHANG B, et al. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries[J]. J Power Sources, 2018, 392:232-238.
[82] WETJEN M, NAVARRA M A, PANERO S, et al. Composite poly(ethylene oxide) electrolytes plasticized by n-alkyl-n-butylpyrrolidinium bis(trifluoromethane-sulfonyl)imide for lithium batteries[J]. ChemSusChem, 2013, 6(6):1037-1043.
[83] VIGNAROOBAN K, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes[J]. Solid State Ionics, 2014, 266:25-28.
[84] KIM Y-T, SMOTKIN E S. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries[J]. Solid State Ionics, 2002, 149(1):29-37.
[85] ZHAO C, DING F, LI H, et al. Ionic liquid-modified poly(propylene carbonate)-based electrolyte for all-solid-state lithium battery[J]. Ionics, 2020, 26(11):5503-5511.
[86] TAN J, AO X, DAI A, et al. Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries[J]. Energy Storage Mater, 2020, 33:173-180.
[87] MINDEMARK J, TöRMä E, SUN B, et al. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries[J]. Polymer, 2015, 63:91-98.
[88] XU S, SUN Z, SUN C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Adv Funct Mater, 2020, 30(51):2007172.
[89] DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: Present, past and future[J]. Electrochim Acta, 2011, 57:4-13.
[90] FALIYA K, KLIEM H. Charge distributions in poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Electrochim Acta, 2018, 290:211-219.
[91] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chem Soc Rev, 2011, 40(5):2525.
[92] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun, 2014, 50(34):4448-4450.
[93] BOGLE X, VAZQUEZ R, GREENBAUM S, et al. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR[J]. J Phys Chem Lett, 2013, 4(10):1664-1668.
[94] ONG M T, VERNERS O, DRAEGER E W, et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics[J]. J Phys Chem C, 2015, 119(4):1535-1545.
[95] MATSUBARA K, KANEUCHI R, MAEKITA N. 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents[J]. J Chem Soc, 1998, 94(24):3601-3605.
[96] KIMURA K, MOTOMATSU J, TOMINAGA Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes[J]. J Phys Chem C, 2016, 120(23):12385-12391.
[97] HU Z, XIAN F, GUO Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries[J]. Chem Mater, 2020, 32 (8):3405-3413.
[98] WANG J, WU Y, XUAN X, et al. Ion–molecule interactions in solutions of lithium perchlorate in propylene carbonate+diethyl carbonate mixtures: An IR and molecular orbital study[J]. Spectrochim Acta A, 2002, 58(10):2097-2104.
[99] LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem, 2014, 7(7):1901-1908.
[100] HE Z-J, FAN L-Z. Poly(ethylene carbonate)-based electrolytes with high concen-tration Li salt for all-solid-state lithium batteries[J]. Rare Metals, 2018, 37(6):488-496.
[101] YANG H, YIN L, SHI H, et al. Suppressing lithium dendrite formation by slowing its desolvation kinetics[J]. Chem Commun, 2019, 55(88):13211-13214.
修改评论