中文版 | English
题名

室温高离子电导率聚合物固态电解质研究

其他题名
A STUDY ON SOLID POLYMER ELECTROLYTES WITH HIGH IONIC CONDUCTIVITY AT ROOM TEMPERATURE
姓名
姓名拼音
PENG Wenjing
学号
12032554
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
徐洪礼
导师单位
创新创业学院
论文答辩日期
2022-05-13
论文提交日期
2022-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

        聚合物固态电解质(SPE)以其加工性能佳、柔韧性好、低可燃性等诸多优点受到广泛关注。 因此, 以 SPE构建的 固态锂金属电池,被认为是下一代储能技术的有力竞争者。然而目前的 SPE还远未达到商业化 应用的要求,究其原因主要是其室温离子电导率较低,难以满足生产需求 。因此,设计和开发室温高离子电导率的 SPE是固态锂金属电池进一步发展的关键。本论文旨在制备具有室温 高 离子电导率( (>10-4 S cm-1)、 较高锂离子迁移数、化学和电化学性质稳定的 SPE,并评估其在固态锂电池中的应用潜力。本论文主要以聚碳酸乙烯酯( PEC)和聚 环氧乙烷 PEO 这两种 聚合物分别作为 SPE的聚合物基体材料 ,从聚合物改性入手,通过添加不同增塑剂制备了两种 具有高室温离子电导率的 聚合物固态电解质。

         在PEC体系中,分别选取了玻璃纤维膜作为支撑物,双二氟磺酰亚胺锂(LiFSI)作为锂盐,丁二腈(SN)作为增塑剂,通过调节SN和LiFSI的比例并以简单的溶液浸泡的方式制备了聚合物电解质。在30℃下,该聚合物电解质的离子电导率为1.8×10−4 S cm-1。基于上述电解质的Li//Li电池显示出较低的极化电位,在0.1 mA cm-2电流下稳定循环2200 h以上。此外,LiFePO4//Li电池具有良好的循环稳定性,0.5 C倍率下稳定循环690圈后,容量保持率仍高达80.9%。

         在PEO体系中,以双三氟甲烷磺酰亚胺锂(LiTFSI)作为锂盐,四乙二醇二甲醚(TEGDME)作为增塑剂,通过溶液浇铸法制备聚合物电解质膜。通过调整TEGDME与LiTFSI的添加比例,制备了均相且自支撑的聚合物电解质膜。该方法有效提高了室温下PEO中非晶区的占比,为锂离子传输提供快速通道,将离子导电率提高3个数量级。在30℃下,基于上述电解质的Li//Li电池在0.1 mA cm-2电流下稳定循环1800 h以上。0.2 C倍率下,LiFePO4//Li电池也表现出较高的放电比容量,首圈高达155.6 mAh g-1。且具有良好的循环稳定性,循环140圈后,容量保持率为80.0%。

其他摘要

      Solid-state polymer electrolytes (SPEs) attract extensive interests due to their unique properties, such as easy processability, excellent flexibility and low flammability. Therefore, all solid-state lithium metal batteries based on SPEs are regarded as the promising candidates for next-generation energy storage technology. However, SPEs currently are far from being commercialized, mainly caused by their disadvantage of low ionic conductivity at room temperature. Therefore, designing and developing SPEs with high ionic conductivity at room temperature is the key to the further development of all solid-state lithium metal batteries. This study aims to design SPE with high ionic conductivity (>10-4 S cm-1), high lithium ion transference number and chemical and electrochemical stability at room temperature. Meanwhile, we assess the applications potential of these electrolytes in solid-state lithium metal batteries. In this work, polyethylene carbonate (PEC) and polyethylene oxide (PEO) are chosen as SPE polymer hosts. Starting from polymer modification, two types of different SPE with high room temperature ionic conductivity are prepared by adding different plasticizers.

      In PEC system, glass fiber membrane lithium, bis(fluorosulfonyl) imide (LiFSI) and succinonitrile (SN) are selected as supports, lithium salt and plasticizer, respectively. A PECLi60-SN15 polymer electrolyte is successfully fabricated via quiet handy method of solution soaking method by finely tuned the ratios of SN to LiFSI. As a result, the optimal ionic conductivity of 1.8×10−4 S cm-1 is achieved at 30℃Li symmetric cells with the above electrolyte display low voltage polarization and stably cycling performance for over 1000 h at 0.2 mA cm-2. LiFePO4//Li batteries exhibit good cycling stability (80.9% retention at 1 C after 690 cycles).

       In PEO system, the polymer electrolyte membrane is prepared by solution cast technique with bis(trifluoromethanesulfonyl) imide (LiTFSI) as the lithium salt and tetraethylene glycol dimethyl ether (TEGDME) as the plasticizer. By adjusting the addition ratio of TEGDME to LiTFSI, a PEOT electrolyte is obtained as homogeneous, self-standing membranes. The method effectively improves the proportion of amorphous region in PEO at room temperature which provides a fast channel for lithium-ion transmission. The ionic conductivity is enhanced by three orders of magnitude at 30 °C. Li symmetric cell with the above electrolyte stably cycles for more than 1800 h at 0.1 mA cm-2. Moreover, LiFePO4//Li battery also shows a high discharge specific capacity, with the initial discharge specific capacity as high as 155.6 mAh g-1. Moreover, the batteries exhibit good cycling stability (80.0% retention at 0.2 C after 140 cycles)

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] CHU S, MAJUMDAR. A Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
[2] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. J Power Sources, 2013, 226:272-288.
[3] WANG Q, JIANG L, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55:93-114.
[4] DI LECCE D, CARBONE L, GANCITANO V, et al. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes[J]. J Power Sources, 2016, 334:146-153.
[5] HESS S, WOHLFAHRT-MEHRENS M, WACHTLER M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements[J]. J Electrochem Soc, 2015, 162(2):A3084-A3097.
[6] ARYA A, SHARMA A L. Polymer electrolytes for lithium ion batteries: A critical study[J]. Ionics, 2017, 23(3):497-540.
[7] AMICI J, ASINARI P, AYERBE E, et al. A roadmap for transforming research to invent the batteries of the future designed within the european large scale research initiative battery 2030+[J]. Adv Energy Mater, 2022, DOI:10.1002/aenm.202102785.
[8] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1):19-29.
[9] LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. J Mater Chem A, 2016, 4(26):10038-10069.
[10] PANG Y, PAN J, YANG J, et al. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review[J]. Electrochem Energy R, 2021, 4(2):169-193.
[11] MURALI A, SAKAR M, PRIYA S, et al. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review[J]. Mater Lett, 2022, DOI:10.1016/j.matlet.2022.131764.
[12] CHENG Z, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Mater, 2021, 34:388-416.
[13] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23):8790-8839.
[14] ZHAO Y, BAI Y, LI W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries[J]. Chem Mater, 2020, 32(16):6811-6830.
[15] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Mater, 2016, 5:139-164.
[16] ARMAND M B. Intercalation electrodes [M]. Springer US. 1980: 145-161.
[17] MEGAHED S, SCROSATI B. Lithium-ion rechargeable batteries[J]. J Power Sources, 1994, 51(1):79-104.
[18] 刘松, 侯宏英, 胡文, 等. 锂离子电池集流体的研究进展[J]. 硅酸盐通报, 2015, 34(09):2562-2568.
[19] LV F, WANG Z, SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441:227175.
[20] JANEK J, ZEIER W G A. solid future for battery development[J]. Nat Energy, 2016, 1(9):16141.
[21] LIU Y, XU B, ZHANG W, et al. Composition modulation and structure design of inorganic‐in‐polymer composite solid electrolytes for advanced lithium batteries[J]. Small, 2020, 16(15):1902813.
[22] GUO Y, LI H, ZHAI T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv Mater, 2017, 29(29):1700007.
[23] HU M, PANG X, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. J Power Sources, 2013, 237:229-242.
[24] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[25] CHOUDHURY S, STALIN S, VU D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nat Commun, 2019, 10(1):4398.
[26] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(04):331-341.
[27] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Mater, 2018, 30(17):1705702.
[28] DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Mat Sci Eng R, 2019, 136:27-46.
[29] YAJIMA T, HINUMA Y, HORI S, et al. Correlated Li-ion migration in the superionic conductor Li10GeP2S12[J]. J Mater Chem A, 2021, 9(18):11278-11284.
[30] OH K, CHANG D, LEE B, et al. Native defects in Li10GeP2S12 and their effect on lithium diffusion[J]. Chem Mater, 2018, 30(15):4995-5004.
[31] LEE Y-G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nat Energy, 2020, 5(4):299-308.
[32] KOTOBUKI M, KANAMURA K. Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte[J]. Ceram Int, 2013, 39(6):6481-6487.
[33] WU J-F, CHEN E-Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Appl Mater Interfaces, 2017, 9(2):1542-1552.
[34] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41):7778-7781.
[35] AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chem Lett, 2011, 40(1):60-62.
[36] HAYAMIZU K, TERADA Y, KATAOKA K, et al. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO–Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2019, 150(19):194502.
[37] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14-16):911-916.
[38] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11):589.
[39] ARMAND M B, CHABAGNO J M, DUCLOT M J. Polyethers as solid electrolytes[C]. Fast Ion Transp. Solids: Electrodes Electrolytes, 1979:131-136.
[40] BERTHIER C, GORECKI W, MINIER M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1):91-95.
[41] AN Y, HAN X, LIU Y, et al. Progress in solid polymer electrolytes for lithium‐ion batteries and beyond[J]. Small, 2022, 18:2103617.
[42] XU L, LU Y, ZHAO C Z, et al. Toward the scale‐up of solid‐state lithium metal batteries: The gaps between lab‐level cells and practical large‐format batteries[J]. Adv Energy Mater, 2021, 11(4):2002360.
[43] LI M, WANG C, CHEN Z, et al. New concepts in electrolytes[J]. Chem Rev, 2020, 120(14):6783-6819.
[44] XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. J Mater Chem A, 2015, 3(38):19218-19253.
[45] TOMINAGA Y, SHIMOMURA T, NAKAMURA M. Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes[J]. Polymer, 2010, 51(19):4295-4298.
[46] 董甜甜, 张建军, 柴敬超, 等. 聚碳酸酯基固态聚合物电解质的研究进展[J]. 高分子学报, 2017, 06:906-921.
[47] SMITH M J, SILVA M M, CERQUEIRA S, et al. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate)[J]. Solid State Ionics, 2001, 140(3):345-351.
[48] 张恒源, 刘建叶, 祁丽亚, 等. PPC/LAGP固态复合电解质制备与性能[J]. 工程塑料应用, 2020, 48(4):31-36.
[49] WANG L, HU S, SU J, et al. Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2019, 11(45):42715-42721.
[50] XU J, FENG E, SONG J. Renaissance of aliphatic polycarbonates: New techniques and biomedical applications[J]. J Appl Polym Sci, 2014, 131(5): 39822.
[51] TSUCHIDA E, OHNO H, TSUNEMI K, et al. Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate[J]. Solid State Ionics, 1983, 11(3):227-233.
[52] LI Y-J, FAN C-Y, ZHANG J-P, et al. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries[J]. Dalton Trans, 2018, 47(42):14932-14937.
[53] SUNDARAMAHALINGAM K, VANITHA D, NALLAMUTHU N, et al. Electrical properties of lithium bromide poly ethylene oxide / poly vinyl pyrrolidone polymer blend elctrolyte[J]. Physica B, 2019, 553:120-126.
[54] BAO J, QU X, QI G, et al. Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries[J]. Solid State Ionics, 2018, 320:55-63.
[55] TANAKA R, SAKURAI M, SEKIGUCHI H, et al. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends[J]. Electrochim Acta, 2001, 46(10):1709-1715.
[56] ARYA A, SHARMA A L. Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes[J]. J Mater Sci: Mater Electron, 2018, 29(20):17903-17920.
[57] ORIHARA K, YONEKURA H. Nonlinear effects on the ionic conductivity of poly(ethylene oxide)/uthium perchlorate complexes caused by the blending of poly(vinyl acetate)[J]. J Macromol Sci A, 1990, 27(9-11):1217-1223.
[58] ABRAHAM K M, ALAMGIR M. Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries[J]. Chem Mater, 1991, 3(2):339-348.
[59] MUNICHANDRAIAH N, SIVASANKAR G, SCANLON L G, et al. Characterization of PEO-PAN hybrid solid polymer electrolytes[J]. J Appl Polym Sci, 1997, 65(11):2191-2199.
[60] ACOSTA J L, MORALES E. Structural, morphological and electrical characterization of polymer electrolytes based on PEO/PPO blends[J]. Solid State Ionics, 1996, 85(1):85-90.
[61] JACOB M M E, PRABAHARAN S R S, RADHAKRISHNA S. Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes[J]. Solid State Ionics, 1997, 104(3):267-276.
[62] WHANG W-T, YANG L-H, FAN Y-W. Effect of poly(vinylidene fluoride) on the ionic conductivity and morphology of PEO–salt polymer electrolytes[J]. J Appl Polym Sci, 1994, 54(7):923-933.
[63] ZHANG J, YUE L, HU P, et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Sci Rep-UK, 2014, 4(1):6272.
[64] LI Z, MOGENSEN R, MINDEMARK J, et al. Ion-conductive and thermal properties of a synergistic poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte[J]. Macromol Rapid Commun, 2018, 39(14):1800146.
[65] SINGH M, ODUSANYA O, WILMES G M, et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007, 40(13):4578-4585.
[66] GOMEZ E D, PANDAY A, FENG E H, et al. Effect of ion distribution on conductivity of block copolymer electrolytes[J]. Nano Lett, 2009, 9(3):1212-1216.
[67] JO G, AHN H, PARK M J. Simple route for tuning the morphology and conductivity of polymer electrolytes: One end functional group is enough[J]. ACS Macro Lett, 2013, 2(11):990-995.
[68] JO G, JEON H, PARK M J. Synthesis of polymer electrolytes based on poly(ethylene oxide) and an anion-stabilizing hard polymer for enhancing conductivity and cation transport[J]. ACS Macro Lett, 2015, 4(2):225-230.
[69] PRZYŁUSKI J, WIECZOREK W. Copolymer electrolytes[J]. Solid State Ionics, 1992, 53-56:1071-1076.
[70] BANNISTER D J, DAVIES G R, WARD I M, et al. Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3[J]. Polymer, 1984, 25(11):1600-1602.
[71] MATSUMOTO M, UNO T, KUBO M, et al. Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties[J]. Ionics, 2013, 19(4):615-622.
[72] UCHIYAMA R, KUSAGAWA K, HANAI K, et al. Development of dry polymer electrolyte based on polyethylene oxide with co-bridging agent crosslinked by electron beam[J]. Solid State Ionics, 2009, 180(2):205-211.
[73] WALKER C N, VERSEK C, TOUMINEN M, et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Lett, 2012, 1(6):737-741.
[74] ZHANG Y, LU W, CONG L, et al. Cross-linking network based on poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery[J]. J Power Sources, 2019, 420:63-72.
[75] ZHENG Y, LI X, LI C Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Mater, 2020, 29:42-51.
[76] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692):456-458.
[77] ZHU Y, CAO J, CHEN H, et al. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries[J]. J Mater Chem A, 2019, 7(12):6832-6839.
[78] FANG R, XU B, GRUNDISH N S, et al. Li2S6‐integrated PEO‐based polymer electrolytes for all‐solid‐state lithium‐metal batteries[J]. Angew Chem Int Ed, 2021, 60(32):17701-17706.
[79] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun (Camb), 2014, 50(34):4448-4450.
[80] KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochem Commun, 2016, 66:46-48.
[81] HE Z, CHEN L, ZHANG B, et al. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries[J]. J Power Sources, 2018, 392:232-238.
[82] WETJEN M, NAVARRA M A, PANERO S, et al. Composite poly(ethylene oxide) electrolytes plasticized by n-alkyl-n-butylpyrrolidinium bis(trifluoromethane-sulfonyl)imide for lithium batteries[J]. ChemSusChem, 2013, 6(6):1037-1043.
[83] VIGNAROOBAN K, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes[J]. Solid State Ionics, 2014, 266:25-28.
[84] KIM Y-T, SMOTKIN E S. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries[J]. Solid State Ionics, 2002, 149(1):29-37.
[85] ZHAO C, DING F, LI H, et al. Ionic liquid-modified poly(propylene carbonate)-based electrolyte for all-solid-state lithium battery[J]. Ionics, 2020, 26(11):5503-5511.
[86] TAN J, AO X, DAI A, et al. Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries[J]. Energy Storage Mater, 2020, 33:173-180.
[87] MINDEMARK J, TöRMä E, SUN B, et al. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries[J]. Polymer, 2015, 63:91-98.
[88] XU S, SUN Z, SUN C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Adv Funct Mater, 2020, 30(51):2007172.
[89] DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: Present, past and future[J]. Electrochim Acta, 2011, 57:4-13.
[90] FALIYA K, KLIEM H. Charge distributions in poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Electrochim Acta, 2018, 290:211-219.
[91] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chem Soc Rev, 2011, 40(5):2525.
[92] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun, 2014, 50(34):4448-4450.
[93] BOGLE X, VAZQUEZ R, GREENBAUM S, et al. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR[J]. J Phys Chem Lett, 2013, 4(10):1664-1668.
[94] ONG M T, VERNERS O, DRAEGER E W, et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics[J]. J Phys Chem C, 2015, 119(4):1535-1545.
[95] MATSUBARA K, KANEUCHI R, MAEKITA N. 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents[J]. J Chem Soc, 1998, 94(24):3601-3605.
[96] KIMURA K, MOTOMATSU J, TOMINAGA Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes[J]. J Phys Chem C, 2016, 120(23):12385-12391.
[97] HU Z, XIAN F, GUO Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries[J]. Chem Mater, 2020, 32 (8):3405-3413.
[98] WANG J, WU Y, XUAN X, et al. Ion–molecule interactions in solutions of lithium perchlorate in propylene carbonate+diethyl carbonate mixtures: An IR and molecular orbital study[J]. Spectrochim Acta A, 2002, 58(10):2097-2104.
[99] LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem, 2014, 7(7):1901-1908.
[100] HE Z-J, FAN L-Z. Poly(ethylene carbonate)-based electrolytes with high concen-tration Li salt for all-solid-state lithium batteries[J]. Rare Metals, 2018, 37(6):488-496.
[101] YANG H, YIN L, SHI H, et al. Suppressing lithium dendrite formation by slowing its desolvation kinetics[J]. Chem Commun, 2019, 55(88):13211-13214.

所在学位评定分委会
创新创业学院
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340102
专题创新创业学院
推荐引用方式
GB/T 7714
彭雯静. 室温高离子电导率聚合物固态电解质研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032554-彭雯静-创新创业学院.(4174KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭雯静]的文章
百度学术
百度学术中相似的文章
[彭雯静]的文章
必应学术
必应学术中相似的文章
[彭雯静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。