[1] AGGARWAL S, RAMESH R. Point defect chemistry of metal oxide hetherostructures[J]. Annu Rev Mater Sci, 1998, 28: 463-499.
[2] KALININ S V, SPALDIN N A. Functional ion defects in transition metal oxides[J]. Science, 2013, 341(858):858-859.
[3] Tuller H L, BISHOP S R. Point defects in oxides: tailoring materials through defect engineering[J]. Annu Rev Mater Res, 2011, 41: 369-398.
[4] Li W W, SHI J L, ZHANG K H L, et al. Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities[J]. Mater Hori z, 2020, 7(11): 2832-2859.
[5] AHADI K, GALLETTI L, LI Y, et al. Enhancing superconductivity in SrTiO3 films with strain[J]. Sci Adv, 2019, 5: eaaw0120.
[6] HAENI J H, IRVIN P, CHANG W, et al. Room-temperature ferroelectricity in strained SrTiO3[J]. Nature, 2004, 430: 758-761.
[7] LEE S A, JEONG H, WOO S, et al. Phase transitions via selective elemental vacancy engineering in complex oxide thin films[J]. Sci Rep, 2016, 6: 23649.
[8] KANG K T, SEO H I, KWON O, et al. Ferroelectricity in SrTiO3 epitaxial thin films via Sr-vacancy induced tetragonality[J]. Appl Surf Sci, 2020, 499: 143930.
[9] LEE S A, OH S, LEE J, et al. Tuning electromagnetic properties of SrRuO3epitaxial thin films via atomic control of cation vacancies[J]. Sci Rep, 2017, 7(1): 11583.
[10] CHENG S, LI M, DENG S, et al. Manipulation of magnetic properties by oxygen vacancies in multiferroic YMnO3[J]. Adv Funct Mater, 2016, 26(21): 3589-3598.
[11] JEEN H, CHOI W S, FREELAND J W, et al. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3-δ[J]. Adv Mater, 2013, 25(27): 3651-3656.
[12] KHARE A, SHIN D, YOO T S, et al. Topotactic metal-insulator transition in epitaxial SrFeOx thin films[J]. Adv Mater, 2017, 29(37): 1606566.
[13] MUÑOZ A, DE LA CALLE C, ALONSO J A, et al. Crystallographic and magneticstructure of SrCoO2.5 brownmillerite: neutron study coupled with band-structure calculations[J]. Phys Rev B, 2008, 78(5): 054404.
[14] CHOI W S, JEEN H, LEE J H, et al. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations[J]. Phys Rev Lett, 2013, 111(9): 097401.
[15] FENNIE C J, RABE K M. Magnetic and electric phase control in epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97(26): 267602.
[16] LEE J H, FANG L, VLAHOS E, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling[J]. Nature, 2010, 466(7309): 954-958.
[17] LI C, ZHAO J, DONG Z, et al. Strain induced magnetic transitions and spin reorientations in quantum paraelectric EuTiO3 material[J]. J Magn Magn, 2015, 382: 193-201.
[18] LEE J H, KE X, PODRAZA N J, et al. Optical band gap and magnetic properties of unstrained EuTiO3 films[J]. Appl Phys Lett, 2009, 94(21): 212509.
[19] RANJAN R, SADAT NABI H, PENTCHEVA R. Electronic structure and magnetism of EuTiO3: a first-principles study[J]. J Phys Condens Matter, 2007, 19(40): 406217.
[20] AKAMATSU H, KUMAGAI Y, OBA F, et al. Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations[J]. Phys Rev B, 2011, 83(21): 214421.
[21] TANAKA K, FUJITA K, MARUYAMA Y, et al. Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin films[J]. J Mater Res, 2013, 28(8): 1031-1041.
[22] KATSUFUJI T, TOKURA Y. Transport and magnetic properties of a ferromagnetic metal: Eu1-xRxTiO3[J]. Phys Rev B, 1999, 60: R15021.
[23] AKAHOSHI D, HORIE H, SAKAI S, et al. Ferromagnetic behavior in mixed valence europium (Eu2+/Eu3+) oxide EuTi1−xMxO3 (M=Al3+andGa3+)[J]. Appl Phys Lett, 2013, 103(17): 172407.
[24] AKAHOSHI D, KOSHIKAWA S, NAGASE T, et al. Magnetic phase diagram for the mixed valence Eu oxide EuTi1−xAlxO3(0≤x≤1)[J]. Phys Rev B, 2017, 96(18): 184419.
[25] AKAHOSHI D, MIYAMOTO G, HAYAKAWA Y, et al. The magnetic properties of the mixed valence Eu oxide EuTi1-xScxO3 (0 ≤ x ≤ 1)[J]. J Solid State Chem, 2019, 280: 120985.
[26] KUSUSE Y, MURAKAMI H, FUJITA K, et al. Magnetic and transport properties of EuTiO3 thin films doped with Nb[J]. Jpn J Appl Phys, 2014, 53(5S1): 05FJ7.
[27] LI L, ZHOU H, YAN J, et al. Research update: magnetic phase diagram of EuTi1−xBxO3 (B = Zr, Nb)[J]. APL Mater, 2014, 2(11): 110701.
[28] RYAN P J, KIM J-W, BIROL T, et al. Reversible control of magnetic interactions by electric field in a single-phase material[J]. Nat Commun, 2013, 4: 1334.
[29] SPALDIN N A, CHEONG S W, RAMESH R. Multiferroics: Past, present, and future[J]. Phys Today, 2010, 63: 38.
[30] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442: 759.
[31] MA J, HU J, LI Z, et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films[J]. Adv Mater, 2011, 23: 1062.
[32] SPALDIN N A, FIEBIG M. The renaissance o magnetoelectric multiferroics[J]. Science, 2005, 309: 391.
[33] NAN C W, BICHURIN M I, DONG S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. J Appl Phys, 2008, 103: 031101.
[34] ASTROV D N. The magnetoelectric effect in antiferromagnetics[J]. Sov Phys JetpUssr, 1960, 11: 708.
[35] AIZU K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals[J]. Phy Rev B, 1970, 2: 754.
[36] SCHMID H. Multi-ferroic magnetoelectrics[J]. Ferroelectrics, 1994, 162: 317.
[37] RAMESH R, SPALDIN N A. Multiferroics: progress and prospects in thin films[J]. Nat Mater, 2007, 6: 21.
[38] VAZ C A F, HOFFMAN J, AHN C H et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures[J]. Adv Mater, 2010, 22: 2900.
[39] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426: 55.
[40] FIEBIG M. Revival of the magnetoelectric effect[J]. J Phys D: Appl Phys, 2005, 38: R123.
[41] BAEK S H, JANG H W, FOLKMAN C M, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices[J]. Nat Mater, 2010, 9: 309.
[42] 宋成. 钴掺杂稀磁氧化物的局域结构与磁学性能[D]. 北京:清华大学材料科学与工程系, 2008.
[43] 刘学超, 陈之战施尔畏, 等. ZnO 基稀磁半导体磁性机理研究进展[J]. 无机材料学报, 2009, 24(1): 1-7.
[44] SCHLOM D G, CHEN L Q, EOM CB, et al. Straintuning of ferroelectric thin films[J]. Annu Rev Mater Res, 2007, 37: 589.
[45] SCHLOM D G, CHEN L Q, FENNIE C J, et al. Elastic strain engineering of ferroic oxides[J]. MRS Bulletin, 2014, 39: 118.
[46] FENNIE C J, RABE K M. Magnetic and electric phase control in epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97: 267602.
[47] BOUSQUET E, SPALDIN N A, GHOSEZ P. Strain-induced ferroelectricity in simple rock salt binary oxides[J]. Phys Rev Lett, 2010, 104: 037601.
[48] BOWEN C R, KIM H A, WEAVER P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications[J]. Energ Environ Sci, 2014, 7: 25.
[49] ZHAI J, XING Z, DONG S, et al. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature[J]. Appl Phys Lett, 2006, 88: 062510.
[50] FETISOV Y K, SRINIVASAN G. Electric field tuning characteristics of a ferritepiezoelectric microwave resonator[J]. Appl Phys Lett, 2006, 88: 143503.
[51] GAJEK M, BIBES M, FUSIL S, et al. Tunnel junctions with multiferroic barriers[J]. Nat Mater, 2007, 6: 296.
[52] DAS J, SONG Y Y, MO N, et al. Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic-Ferroelectric Heterostructures[J]. Adv Mater, 2009, 21: 2045.
[53] 王蕴杰. 铁磁材料居里温度测量的 matlab 分析[J]. 青海师范大学学报, 2009(1): 21-24.
[54] MCGUIRE T R, SHAFER M W, JOENK R J, et al. Magnetic structure of EuTiO3[J]. J Appl Phys, 1966, 37: 981.
[55] CHIEN C L, DEBENEDETTI S, BARROS F D S. Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7[J]. Phys Rev B, 1974, 10: 3913.
[56] KATSUFUJI T, TAKAGI H. Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3[J]. Phys Rev B, 2001, 64: 054415.
[57] NARAYAN A, CANO A, ALEXANDER V, et al. Multiferroic Quantum Criticality[J]. Nat Mater, 2019, 18: 223-228.
[58] BUSSMANN-HOLDER A, KÖHLER J, KREMER R K, et al. Relation between structural instabilities in EuTiO3 and SrTiO3[J]. Phys Rev B, 2011, 83: 212102.
[59] ALLIETA M, SCAVINI M, SPALEK L J, et al. Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO3[J]. Phys Rev B, 2012, 85: 184107.
[60] GOIAN V, KAMBA S, PACHEROVÁ O, et al. Antiferrodistortive phase transition in EuTiO3[J]. Phys Rev B, 2012, 86: 054112.
[61] KOLODIAZHNYI T, VALANT M, WILLIAMS J R, et al. Evidence of Eu2+ 4f electrons in the valence band spectra of EuTiO3 and EuZrO3. J Appl Phys, 2012, 112: 083719.
[62] AKAMATSU H, KUMAGAI Y, OBA F, et al. Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations[J]. Phys Rev B, 2011, 83: 214421.
[63] YANG Y, REN W, WANG D, et al. Understanding and revisiting properties of EuTiO3 bulk material and films from first principles[J]. Phys Rev Lett, 2012, 109: 267602.
[64] TARSA E J, HACHFELD E A, QUINLAN F T, et al. Growth-related stress and surface morphology in homoepitaxial SrTiO3 films[J]. Appl Phys Lett, 1996, 68: 490.
[65] YAMADA T, PETZELT J, TAGANTSEV A K, et al. In-Plane and Out-of-Plane Ferroelectric Instabilities in Epitaxial SrTiO3 Films[J]. Phys Rev Lett, 2006, 96: 157602.
[66] KATSUHISA T, KOJI F, YUYA M, et al. Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin film[J]. J Mater Res, 2013, 28(08): 1031-1041.
[67] LIN Y. Vertical Strain-Driven Antiferromagnetic to Ferromagnetic Phase Transition in EuTiO3 Nanocomposite Thin Films[J]. ACS Appl Mater Inter, 2020, 12: 8513-8521.
[68] SHIN D, KIM I, SONG S, et al. Defect engineering of magnetic ground state in EuTiO3 epitaxial thin films[J]. J Am Ceram Soc, 2021, 104: 4606-4613.
[69] ASCHAUER U, PFENNINGER R, SVERRE M, et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3[J]. Phys Rev B, 2013, 88: 054111.
[70] 符春林, 铁电薄膜材料及其应用[M], 科学出版社,2009.
[71] 陈传忠, 包全合, 姚书山. 脉冲激光沉积技术及其应用[J]. 激光技术,2003, 27: 443.
[72] CHRISEY D B, HUBLER G K. Pulsed Laser Deposition of Thin Films[J]. New York: John Wiley&Sons, 1994.
[73] 长沙鑫康新材料. 脉冲激光沉积(PLD)技术是目前最有前途的靶材镀膜技术[EB/OL]. (2021-05-26)
[2022-04-25]. https://www.xk-sputteringtarget.cn/cn/news_73.html.
[74] 吴自勤, 王兵. 薄膜生长[M].科学出版社,2001.
[75] 谷婷. 氧化物异质结中界面相变诱导的阻变特性研究[D]. 深圳:南方科技大学哈尔滨工业大学,2020.
[76] 杜希文, 原续波. 材料分析方法[M].天津大学出版社,2006.
[77] 马 丽 . 自旋轨道耦合对磁性和自旋相关输运的调控效应 [D].上 海 :同济大学2016.
[78] 于吉顺, 陆琦, 肖平, 等. X 射线反射(XRR)对薄膜样品厚度的研究[J].功能材料,2008, 39(2):199-201.
[79] 王芳, 许小红. 振动样品磁强计在磁记录介质中的应用[J]. 信息记录材料,2005, 6(2): 55- 59.
[80] 郇维亮,高峰,徐小龙.新型振动样品磁强计测量材料磁性[J].实验技术与管理, 2012, 29 (2): 36-39.
[81] FENNIE C J,RABE K M. Magnetic and electric phase control epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97(26): 267602.
[82] 王歆钰, 镇思琦, 董正超, 等. 应变作用下 EuTiO3 薄膜铁电性的第一性原理研究[J]. 南通大学学报, 2017, 3: 16.
修改评论