中文版 | English
题名

EuTiO3薄膜的制备及磁性的研究

其他题名
STUDY ONPREPARATION AND MAGNETIC PROPERTIESOF EuTiO3THIN FILMS
姓名
姓名拼音
LUO Qinggui
学号
12032063
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
陈朗
导师单位
物理系
论文答辩日期
2022-05-18
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

EuTiO3 (ETO)是一种立方结构的多铁材料,其在低温下表现为反铁磁 序和量子顺电序共存,奈尔温度为 5.1 K。在 ETO 顺电-反铁磁序共存的温 度范围内,其块材中的 Eu 原子间存在着较强的自旋晶格耦合作用,通过合 适的双轴应变,可以使 ETO 发生磁序的转变,从反铁磁有序性相变为铁磁 有序性,铁磁居里温度为 4.2 K。此外,由于低氧压生长而引入的氧空位也 可以使其发生同样的磁序变化。这些现象说明 ETO 材料中同时存在复杂的 电荷、自旋、晶格和轨道自由度之间的耦合作用。因此本文详细研究了氧 空位及双轴应变对薄膜磁性的影响。 本文选用 SrTiO3(STO)(100)和 KTaO3(KTO)(100)作为衬底, 首先,通过脉冲激光沉积(PLD)技术在这两种衬底上生长不同氧压下的 单相 ETO 外延薄膜。通过 X 射线衍射(XRD),RSM 等手段详细研究了薄 膜的应变情况,并研究氧空位对薄膜磁性的影响。然后在不可避免氧空位 存在的情况下进一步研究了双轴拉应变对薄膜磁性的调控作用。 ETO 薄膜的结构表征结果表明,所有薄膜与衬底都呈现良好的外延关 系。在 STO 衬底上表现为未受应变的状态,在 KTO 衬底上表现为受拉应 变的状态。通过对磁性进行表征发现在 STO 上生长的薄膜出现了铁磁有序 现象。这是由于在薄膜沉积过程中氧压较低导致了氧空位的产生,氧空位 的引入使 ETO 的晶胞体积增大和体对角线上 Eu-Ti-Eu 的键角变小。因此减 少了 Eu 和 Ti 之间的轨道重叠,并且减弱了 Eu-Ti-Eu 的反铁磁超交换作用。 最终,引入并增强铁磁相互作用,使薄膜呈现铁磁态。随着氧压的升高, 薄膜中的氧空位减少,导致薄膜的磁性减弱。在相同的生长条件下,KTO 衬底上生长的 ETO 薄膜的磁化强度比在 STO 衬底上生长的薄膜都要更大。 并且在相同氧压下,受双轴拉应变的薄膜铁磁居里温度也更高,可以达到 3.1 K,这说明施加双轴拉应变可以增强 ETO 薄膜的磁性。此外,通过调节 氧压,发现其对 KTO 上的 ETO 薄膜磁性的影响与对 STO 衬底上的类似, 即随着氧压的升高,薄膜的饱和磁化强度和自发磁化强度均减小。对 ETO 薄膜磁性的研究可以丰富对其多铁性的认识以及薄膜磁性的调控方式。

其他摘要

EuTiO3 (ETO) is a cubic multiferroic material that exhibits coexistence of antiferromagnetic and quantum paraelectric orders with the Néel temperature of 5.1 K at low temperatures. There is a strong spin-lattice coupling in the bulk material in the temperature range where the paraelectric and antiferromagnetic order of ETO coexist. With suitable biaxial strain, the magnetic order of ETO can be transformed from an antiferromagnetic order to a ferromagnetic order with the ferromagnetic Curie temperature of 4.2 K. On the other hand, the oxygen vacancies introduced by the growth conditions at low oxygen pressure can change the magnetic order. These results indicate that the complex coupling between charge, spin, lattice and orbital degrees of freedom exists simultaneously in ETO materials. Therefore, the effects of oxygen vacancies and biaxial strain on the magnetic properties of thin films were studied in detail in this thesis. Firstly, the single-phase ETO epitaxial thin films were grown on SrTiO3 ( STO )( 100 ) and KTaO3 ( KTO )( 100 ) substrates by pulsed laser deposition (PLD) under different oxygen pressures. To probe the microstructure, the strains of the films were studied in detail using X-ray diffraction (XRD), RSM, etc. The effects of oxygen vacancies on the magnetic properties of the thin films were investigated. Then the regulation of the biaxial tensile strain on the magnetic properties of the thin films was further studied in the presence of unavoidable oxygen vacancies. The structural characterization results of the ETO films show that all films exhibit epitaxy relationships with the substrates. The ETO films on STO substrates are not subject to epitaxial strains, while those on KTO substrates are subject to tensile strains. Through the characterization of magnetic properties, it is found that the films grown on STO show ferromagnetic order, which is due to the oxygen vacancies introduced by low oxygen pressure during films deposition. The introduction of the oxygen vacancies induces the increase of the unit cell volume and the reduction of the bond angle of Eu-Ti-Eu in ETO films. Abstract III Therefore, the orbital overlap between Eu and Ti is reduced and the antiferromagnetic super-exchange interactions of Eu-Ti-Eu are weakened. As a result, the ferromagnetic interaction is introduced and enhanced, making the films acquire a ferromagnetic state. With the increase of oxygen pressure, the oxygen vacancies decrease in the films, which weakens the magnetic properties of thin films. Under the same growth conditions, the magnetization of ETO films grown on KTO substrates are larger than those grown on STO substrates. Under the same oxygen pressure, the ferromagnetic Curie temperature of the film subjected to biaxial tensile strain is also higher and able to reach 3.1 K. It indicates that the application of biaxial tensile strain can enhance the magnetic properties of the ETO films. In addition, by adjusting the growth oxygen pressure, it is found that the effects of the oxygen pressure on the magnetic properties of ETO films on the KTO substrate are consistent with those on the STO substrate. Both the saturation magnetization and the spontaneous magnetization of the film decrease with the increase of the oxygen pressure. The study of the magnetic properties of ETO thin films will enrich the understanding of its multiferroic properties and the modulation of the magnetic properties of thin films

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] AGGARWAL S, RAMESH R. Point defect chemistry of metal oxide hetherostructures[J]. Annu Rev Mater Sci, 1998, 28: 463-499.
[2] KALININ S V, SPALDIN N A. Functional ion defects in transition metal oxides[J]. Science, 2013, 341(858):858-859.
[3] Tuller H L, BISHOP S R. Point defects in oxides: tailoring materials through defect engineering[J]. Annu Rev Mater Res, 2011, 41: 369-398.
[4] Li W W, SHI J L, ZHANG K H L, et al. Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities[J]. Mater Hori z, 2020, 7(11): 2832-2859.
[5] AHADI K, GALLETTI L, LI Y, et al. Enhancing superconductivity in SrTiO3 films with strain[J]. Sci Adv, 2019, 5: eaaw0120.
[6] HAENI J H, IRVIN P, CHANG W, et al. Room-temperature ferroelectricity in strained SrTiO3[J]. Nature, 2004, 430: 758-761.
[7] LEE S A, JEONG H, WOO S, et al. Phase transitions via selective elemental vacancy engineering in complex oxide thin films[J]. Sci Rep, 2016, 6: 23649.
[8] KANG K T, SEO H I, KWON O, et al. Ferroelectricity in SrTiO3 epitaxial thin films via Sr-vacancy induced tetragonality[J]. Appl Surf Sci, 2020, 499: 143930.
[9] LEE S A, OH S, LEE J, et al. Tuning electromagnetic properties of SrRuO3epitaxial thin films via atomic control of cation vacancies[J]. Sci Rep, 2017, 7(1): 11583.
[10] CHENG S, LI M, DENG S, et al. Manipulation of magnetic properties by oxygen vacancies in multiferroic YMnO3[J]. Adv Funct Mater, 2016, 26(21): 3589-3598.
[11] JEEN H, CHOI W S, FREELAND J W, et al. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3-δ[J]. Adv Mater, 2013, 25(27): 3651-3656.
[12] KHARE A, SHIN D, YOO T S, et al. Topotactic metal-insulator transition in epitaxial SrFeOx thin films[J]. Adv Mater, 2017, 29(37): 1606566.
[13] MUÑOZ A, DE LA CALLE C, ALONSO J A, et al. Crystallographic and magneticstructure of SrCoO2.5 brownmillerite: neutron study coupled with band-structure calculations[J]. Phys Rev B, 2008, 78(5): 054404.
[14] CHOI W S, JEEN H, LEE J H, et al. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations[J]. Phys Rev Lett, 2013, 111(9): 097401.
[15] FENNIE C J, RABE K M. Magnetic and electric phase control in epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97(26): 267602.
[16] LEE J H, FANG L, VLAHOS E, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling[J]. Nature, 2010, 466(7309): 954-958.
[17] LI C, ZHAO J, DONG Z, et al. Strain induced magnetic transitions and spin reorientations in quantum paraelectric EuTiO3 material[J]. J Magn Magn, 2015, 382: 193-201.
[18] LEE J H, KE X, PODRAZA N J, et al. Optical band gap and magnetic properties of unstrained EuTiO3 films[J]. Appl Phys Lett, 2009, 94(21): 212509.
[19] RANJAN R, SADAT NABI H, PENTCHEVA R. Electronic structure and magnetism of EuTiO3: a first-principles study[J]. J Phys Condens Matter, 2007, 19(40): 406217.
[20] AKAMATSU H, KUMAGAI Y, OBA F, et al. Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations[J]. Phys Rev B, 2011, 83(21): 214421.
[21] TANAKA K, FUJITA K, MARUYAMA Y, et al. Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin films[J]. J Mater Res, 2013, 28(8): 1031-1041.
[22] KATSUFUJI T, TOKURA Y. Transport and magnetic properties of a ferromagnetic metal: Eu1-xRxTiO3[J]. Phys Rev B, 1999, 60: R15021.
[23] AKAHOSHI D, HORIE H, SAKAI S, et al. Ferromagnetic behavior in mixed valence europium (Eu2+/Eu3+) oxide EuTi1−xMxO3 (M=Al3+andGa3+)[J]. Appl Phys Lett, 2013, 103(17): 172407.
[24] AKAHOSHI D, KOSHIKAWA S, NAGASE T, et al. Magnetic phase diagram for the mixed valence Eu oxide EuTi1−xAlxO3(0≤x≤1)[J]. Phys Rev B, 2017, 96(18): 184419.
[25] AKAHOSHI D, MIYAMOTO G, HAYAKAWA Y, et al. The magnetic properties of the mixed valence Eu oxide EuTi1-xScxO3 (0 ≤ x ≤ 1)[J]. J Solid State Chem, 2019, 280: 120985.
[26] KUSUSE Y, MURAKAMI H, FUJITA K, et al. Magnetic and transport properties of EuTiO3 thin films doped with Nb[J]. Jpn J Appl Phys, 2014, 53(5S1): 05FJ7.
[27] LI L, ZHOU H, YAN J, et al. Research update: magnetic phase diagram of EuTi1−xBxO3 (B = Zr, Nb)[J]. APL Mater, 2014, 2(11): 110701.
[28] RYAN P J, KIM J-W, BIROL T, et al. Reversible control of magnetic interactions by electric field in a single-phase material[J]. Nat Commun, 2013, 4: 1334.
[29] SPALDIN N A, CHEONG S W, RAMESH R. Multiferroics: Past, present, and future[J]. Phys Today, 2010, 63: 38.
[30] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442: 759.
[31] MA J, HU J, LI Z, et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films[J]. Adv Mater, 2011, 23: 1062.
[32] SPALDIN N A, FIEBIG M. The renaissance o magnetoelectric multiferroics[J]. Science, 2005, 309: 391.
[33] NAN C W, BICHURIN M I, DONG S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. J Appl Phys, 2008, 103: 031101.
[34] ASTROV D N. The magnetoelectric effect in antiferromagnetics[J]. Sov Phys JetpUssr, 1960, 11: 708.
[35] AIZU K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals[J]. Phy Rev B, 1970, 2: 754.
[36] SCHMID H. Multi-ferroic magnetoelectrics[J]. Ferroelectrics, 1994, 162: 317.
[37] RAMESH R, SPALDIN N A. Multiferroics: progress and prospects in thin films[J]. Nat Mater, 2007, 6: 21.
[38] VAZ C A F, HOFFMAN J, AHN C H et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures[J]. Adv Mater, 2010, 22: 2900.
[39] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426: 55.
[40] FIEBIG M. Revival of the magnetoelectric effect[J]. J Phys D: Appl Phys, 2005, 38: R123.
[41] BAEK S H, JANG H W, FOLKMAN C M, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices[J]. Nat Mater, 2010, 9: 309.
[42] 宋成. 钴掺杂稀磁氧化物的局域结构与磁学性能[D]. 北京:清华大学材料科学与工程系, 2008.
[43] 刘学超, 陈之战施尔畏, 等. ZnO 基稀磁半导体磁性机理研究进展[J]. 无机材料学报, 2009, 24(1): 1-7.
[44] SCHLOM D G, CHEN L Q, EOM CB, et al. Straintuning of ferroelectric thin films[J]. Annu Rev Mater Res, 2007, 37: 589.
[45] SCHLOM D G, CHEN L Q, FENNIE C J, et al. Elastic strain engineering of ferroic oxides[J]. MRS Bulletin, 2014, 39: 118.
[46] FENNIE C J, RABE K M. Magnetic and electric phase control in epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97: 267602.
[47] BOUSQUET E, SPALDIN N A, GHOSEZ P. Strain-induced ferroelectricity in simple rock salt binary oxides[J]. Phys Rev Lett, 2010, 104: 037601.
[48] BOWEN C R, KIM H A, WEAVER P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications[J]. Energ Environ Sci, 2014, 7: 25.
[49] ZHAI J, XING Z, DONG S, et al. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature[J]. Appl Phys Lett, 2006, 88: 062510.
[50] FETISOV Y K, SRINIVASAN G. Electric field tuning characteristics of a ferritepiezoelectric microwave resonator[J]. Appl Phys Lett, 2006, 88: 143503.
[51] GAJEK M, BIBES M, FUSIL S, et al. Tunnel junctions with multiferroic barriers[J]. Nat Mater, 2007, 6: 296.
[52] DAS J, SONG Y Y, MO N, et al. Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic-Ferroelectric Heterostructures[J]. Adv Mater, 2009, 21: 2045.
[53] 王蕴杰. 铁磁材料居里温度测量的 matlab 分析[J]. 青海师范大学学报, 2009(1): 21-24.
[54] MCGUIRE T R, SHAFER M W, JOENK R J, et al. Magnetic structure of EuTiO3[J]. J Appl Phys, 1966, 37: 981.
[55] CHIEN C L, DEBENEDETTI S, BARROS F D S. Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7[J]. Phys Rev B, 1974, 10: 3913.
[56] KATSUFUJI T, TAKAGI H. Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3[J]. Phys Rev B, 2001, 64: 054415.
[57] NARAYAN A, CANO A, ALEXANDER V, et al. Multiferroic Quantum Criticality[J]. Nat Mater, 2019, 18: 223-228.
[58] BUSSMANN-HOLDER A, KÖHLER J, KREMER R K, et al. Relation between structural instabilities in EuTiO3 and SrTiO3[J]. Phys Rev B, 2011, 83: 212102.
[59] ALLIETA M, SCAVINI M, SPALEK L J, et al. Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO3[J]. Phys Rev B, 2012, 85: 184107.
[60] GOIAN V, KAMBA S, PACHEROVÁ O, et al. Antiferrodistortive phase transition in EuTiO3[J]. Phys Rev B, 2012, 86: 054112.
[61] KOLODIAZHNYI T, VALANT M, WILLIAMS J R, et al. Evidence of Eu2+ 4f electrons in the valence band spectra of EuTiO3 and EuZrO3. J Appl Phys, 2012, 112: 083719.
[62] AKAMATSU H, KUMAGAI Y, OBA F, et al. Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations[J]. Phys Rev B, 2011, 83: 214421.
[63] YANG Y, REN W, WANG D, et al. Understanding and revisiting properties of EuTiO3 bulk material and films from first principles[J]. Phys Rev Lett, 2012, 109: 267602.
[64] TARSA E J, HACHFELD E A, QUINLAN F T, et al. Growth-related stress and surface morphology in homoepitaxial SrTiO3 films[J]. Appl Phys Lett, 1996, 68: 490.
[65] YAMADA T, PETZELT J, TAGANTSEV A K, et al. In-Plane and Out-of-Plane Ferroelectric Instabilities in Epitaxial SrTiO3 Films[J]. Phys Rev Lett, 2006, 96: 157602.
[66] KATSUHISA T, KOJI F, YUYA M, et al. Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin film[J]. J Mater Res, 2013, 28(08): 1031-1041.
[67] LIN Y. Vertical Strain-Driven Antiferromagnetic to Ferromagnetic Phase Transition in EuTiO3 Nanocomposite Thin Films[J]. ACS Appl Mater Inter, 2020, 12: 8513-8521.
[68] SHIN D, KIM I, SONG S, et al. Defect engineering of magnetic ground state in EuTiO3 epitaxial thin films[J]. J Am Ceram Soc, 2021, 104: 4606-4613.
[69] ASCHAUER U, PFENNINGER R, SVERRE M, et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3[J]. Phys Rev B, 2013, 88: 054111.
[70] 符春林, 铁电薄膜材料及其应用[M], 科学出版社,2009.
[71] 陈传忠, 包全合, 姚书山. 脉冲激光沉积技术及其应用[J]. 激光技术,2003, 27: 443.
[72] CHRISEY D B, HUBLER G K. Pulsed Laser Deposition of Thin Films[J]. New York: John Wiley&Sons, 1994.
[73] 长沙鑫康新材料. 脉冲激光沉积(PLD)技术是目前最有前途的靶材镀膜技术[EB/OL]. (2021-05-26)
[2022-04-25]. https://www.xk-sputteringtarget.cn/cn/news_73.html.
[74] 吴自勤, 王兵. 薄膜生长[M].科学出版社,2001.
[75] 谷婷. 氧化物异质结中界面相变诱导的阻变特性研究[D]. 深圳:南方科技大学哈尔滨工业大学,2020.
[76] 杜希文, 原续波. 材料分析方法[M].天津大学出版社,2006.
[77] 马 丽 . 自旋轨道耦合对磁性和自旋相关输运的调控效应 [D].上 海 :同济大学2016.
[78] 于吉顺, 陆琦, 肖平, 等. X 射线反射(XRR)对薄膜样品厚度的研究[J].功能材料,2008, 39(2):199-201.
[79] 王芳, 许小红. 振动样品磁强计在磁记录介质中的应用[J]. 信息记录材料,2005, 6(2): 55- 59.
[80] 郇维亮,高峰,徐小龙.新型振动样品磁强计测量材料磁性[J].实验技术与管理, 2012, 29 (2): 36-39.
[81] FENNIE C J,RABE K M. Magnetic and electric phase control epitaxial EuTiO3from first principles[J]. Phys Rev Lett, 2006, 97(26): 267602.
[82] 王歆钰, 镇思琦, 董正超, 等. 应变作用下 EuTiO3 薄膜铁电性的第一性原理研究[J]. 南通大学学报, 2017, 3: 16.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340103
专题理学院_物理系
推荐引用方式
GB/T 7714
罗青桂. EuTiO3薄膜的制备及磁性的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032063-罗青桂-物理系.pdf(3633KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[罗青桂]的文章
百度学术
百度学术中相似的文章
[罗青桂]的文章
必应学术
必应学术中相似的文章
[罗青桂]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。