[1] NEUMAN K C, NAGY A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5(6): 491–505. DOI:10.1038/nmeth.1218.
[2] TINOCO I, BUSTAMANTE C. The effect of force on thermodynamics and kinetics of single molecule reactions[J]. Biophysical Chemistry, 2002, 101: 513–533. DOI:10.1016/S0301-4622(02)00177-1.
[3] OMORI R, KOBAYASHI T, SUZUKI A. Observation of a single-beam gradient-force optical trap for dielectric particles in air[J]. Optics Letters, 1997, 22(11): 816. DOI:10.1364/ol.22.000816.
[4] NEUMAN K C, BLOCK S M. Optical trapping[J]. Review of Scientific Instruments, 2004, 75(2787): 2787–2809. DOI:10.1063/1.1785844.
[5] SARKAR R, RYBENKOV V V. A guide to magnetic tweezers and their applications[J]. Frontiers in Physics, 2016, 4(48): 1–20. DOI:10.3389/fphy.2016.00048.
[6] LIPFERT J, KERSSEMAKERS J W J, JAGER T, et al. Magnetic torque tweezers: Measuring torsional stiffness in DNA and RecA-DNA filaments[J]. Nature Methods, 2010, 7(12): 977–980. DOI:10.1038/nmeth.1520.
[7] SHON M J, KIM H, YOON T Y. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension[J/OL]. Nature Communications, 2018, 9(3639): 1–12. http://dx.doi.org/10.1038/s41467-018-06122-3. DOI:10.1038/s41467-018-06122-3.
[8] STRICK T R, ALLEMAND J F, BENSIMON D, et al. The elasticity of a single supercoiled DNA molecule[J]. Science, 1996, 271(5257): 1835–1837. DOI:10.1126/science.271.5257.1835.
[9] TAPIA-ROJO R, ECKELS E C, FERNÁNDEZ J M. Ephemeral states in protein folding under force captured with a magnetic tweezers design[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7873–7878. DOI:10.1073/pnas.1821284116.
[10] LIONNET T, ALLEMAND J F, REVYAKIN A, et al. Single-molecule studies using magnetic traps[J]. Cold Spring Harbor Protocols, 2012, 7(067488): 34–49. DOI:10.1101/pdb.top067488.
[11] VAN LOENHOUT M T J, VAN DER HEIJDEN T, KANAAR R, et al. Dynamics of RecA filaments on single-stranded DNA[J]. Nucleic Acids Research, 2009, 37(12): 4089–4099. DOI:10.1093/nar/gkp326.
[12] ABELS J A, MORENO-HERRERO F, VAN DER HEIJDEN T, et al. Single-molecule measurements of the persistence length of double-stranded RNA[J/OL]. Biophysical Journal, 2005, 88(4): 2737–2744. http://dx.doi.org/10.1529/biophysj.104.052811. DOI:10.1529/biophysj.104.052811.
[13] MANOSAS M, XI X G, BENSIMON D, et al. Active and passive mechanisms of helicases[J]. Nucleic Acids Research, 2010, 38(16): 5518–5526. DOI:10.1093/nar/gkq273.
[14] KRUITHOF M, CHIEN F T, ROUTH A, et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber[J]. Nature Structural and Molecular Biology, 2009, 16(5): 534–540. DOI:10.1038/nsmb.1590.
[15] DE VLAMINCK I, VIDIC I, VAN LOENHOUT M T J, et al. Torsional regulation of hRPA-induced unwinding of double-stranded DNA[J]. Nucleic Acids Research, 2010, 38(12): 4133–4142. DOI:10.1093/nar/gkq067.
[16] KOSTER D A, CROQUETTE V, DEKKER C, et al. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB[J]. Nature, 2005, 434(7033): 671–674. DOI:10.1038/nature03395.
[17] KOSTER D A, CRUT A, SHUMAN S, et al. Cellular strategies for regulating DNA supercoiling: A single-molecule perspective[J]. Cell, 2010, 142(4): 519–530. DOI:10.1016/j.cell.2010.08.001.
[18] LAVELLE C. DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation[J]. Nature Structural and Molecular Biology, 2008, 15(2): 123–125. DOI:10.1038/nsmb0208-123.
[19] VAN DER HEIJDEN T, MODESTI M, HAGE S, et al. Homologous Recombination in Real Time: DNA Strand Exchange by RecA[J]. Molecular Cell, 2008, 30(4): 530–538. DOI:10.1016/j.molcel.2008.03.010.
[20] LE S, CHEN H, CONG P, et al. Mechanosensing of DNA bending in a single specific protein-DNA complex[J]. Scientific Reports, 2013, 3(3508): 1–6. DOI:10.1038/srep03508.
[21] WATANABE R, IINO R, NOJI H. Phosphate release in F1-ATPase catalytic cycle follows ADP release[J/OL]. Nature Chemical Biology, 2010, 6(11): 814–820. http://dx.doi.org/10.1038/nchembio.443. DOI:10.1038/nchembio.443.
[22] COLLINS C, GUILLUY C, WELCH C, et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway[J/OL]. Current Biology, 2012, 22(22): 2087–2094. http://dx.doi.org/10.1016/j.cub.2012.08.051. DOI:10.1016/j.cub.2012.08.051.
[23] MAHOWALD J, ARCIZET D, HEINRICH D. Impact of external stimuli and cell micro-architecture on intracellular transport states[J]. ChemPhysChem, 2009, 10(9–10): 1559–1566. DOI:10.1002/cphc.200900226.
[24] VAN LOENHOUT M T J, KERSSEMAKERS J W J, DE VLAMINCK I, et al. Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification[J/OL]. Biophysical Journal, 2012, 102(10): 2362–2371. http://dx.doi.org/10.1016/j.bpj.2012.03.073. DOI:10.1016/j.bpj.2012.03.073.
[25] GOSSE C, CROQUETTE V. Magnetic tweezers: Micromanipulation and force measurement at the molecular level[J/OL]. Biophysical Journal, 2002, 82(6): 3314–3329. http://dx.doi.org/10.1016/S0006-3495(02)75672-5. DOI:10.1016/S0006-3495(02)75672-5.
[26] HELL S, REINER G, CREMER C, et al. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[J]. Journal of Microscopy, 1993, 169(3): 391–405. DOI:10.1111/j.1365-2818.1993.tb03315.x.
[27] CNOSSEN J P, DULIN D, DEKKER N H. An optimized software framework for real-time, high-throughput tracking of spherical beads[J/OL]. Review of Scientific Instruments, 2014, 85(103712): 1–10. http://dx.doi.org/10.1063/1.4898178. DOI:10.1063/1.4898178.
[28] BUSTAMANTE C, CHEMLA Y R, MOFFITT J R. High-resolution dual-trap optical tweezers with differential detection: Managing environmental noise[J]. Cold Spring Harbor Protocols, 2009, 4(10): 1–4. DOI:10.1101/pdb.ip72.
[29] FIXMAN M, KOVAC J. Polymer conformational statistics. III. Modified Gaussian models of stiff chains[J]. Journal of Chemical Physics, 1973, 58(1564): 1564–1568. DOI:10.1063/1.1679396.
[30] STADLER M A, PASCUAL-LEONE A, GRAFMAN J, et al. Entropic elasticity of λ-phage DNA[J]. Science, 1994, 265(5178): 1599–1600. DOI:10.1126/science.8079176.
[31] BOUCHIAT C, WANG M D, ALLEMAND J F, et al. Estimating the persistence length of a worm-like chain molecule from force-extension measurements[J/OL]. Biophysical Journal, 1999, 76(1 I): 409–413. http://dx.doi.org/10.1016/S0006-3495(99)77207-3. DOI:10.1016/S0006-3495(99)77207-3.
[32] YU Z, DULIN D, CNOSSEN J, et al. A force calibration standard for magnetic tweezers[J/OL]. Review of Scientific Instruments, 2014, 85(12). http://dx.doi.org/10.1063/1.4904148. DOI:10.1063/1.4904148.
[33] TE VELTHUIS A J W, KERSSEMAKERS J W J, LIPFERT J, et al. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data[J/OL]. Biophysical Journal, 2010, 99(4): 1292–1302. http://dx.doi.org/10.1016/j.bpj.2010.06.008. DOI:10.1016/j.bpj.2010.06.008.
[34] CHEN H, FU H, ZHU X, et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA[J/OL]. Biophysical Journal, 2011, 100(2): 517–523. http://dx.doi.org/10.1016/j.bpj.2010.12.3700. DOI:10.1016/j.bpj.2010.12.3700.
[35] LIPFERT J, HAO X, DEKKER N H. Quantitative modeling and optimization of magnetic tweezers[J/OL]. Biophysical Journal, 2009, 96(12): 5040–5049. http://dx.doi.org/10.1016/j.bpj.2009.03.055. DOI:10.1016/j.bpj.2009.03.055.
[36] CHOI H K, MIN D, KANG H, et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway[J]. Science, 2019, 366(6469): 1150–1156. DOI:10.1126/science.aaw8208.
[37] ALONSO-CABALLERO A, ECHELMAN D J, TAPIA-ROJO R, et al. Protein folding modulates the chemical reactivity of a Gram-positive adhesin[J/OL]. Nature Chemistry, 2021, 13(2): 172–181. http://dx.doi.org/10.1038/s41557-020-00586-x. DOI:10.1038/s41557-020-00586-x.
[38] KACZMARCZYK A, MENG H, ORDU O, et al. Chromatin fibers stabilize nucleosomes under torsional stress[J/OL]. Nature Communications, 2020, 11(126): 1–12. http://dx.doi.org/10.1038/s41467-019-13891-y. DOI:10.1038/s41467-019-13891-y.
[39] WANG Z, MALUENDA J, GIRAUT L, et al. Detection of genetic variation and base modifications at base-pair resolution on both DNA and RNA[J/OL]. Communications Biology, 2021, 4(128): 1–14. http://dx.doi.org/10.1038/s42003-021-01648-7. DOI:10.1038/s42003-021-01648-7.
[40] YU M, ZHAO Z, CHEN Z, et al. Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains[J/OL]. Nature Communications, 2020, 11(4476): 1–12. http://dx.doi.org/10.1038/s41467-020-18323-w. DOI:10.1038/s41467-020-18323-w.
[41] LI X, WANG M, ZHENG W, et al. Dynamics of TRF1 organizing a single human telomere[J]. Nucleic acids research, 2021, 49(2): 760–775. DOI:10.1093/nar/gkaa1222.
[42] MA J B, CHEN Z, XU C H, et al. Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase[J]. Nucleic Acids Research, 2020, 48(6): 3156–3164. DOI:10.1093/nar/gkaa057.
[43] ZHAO X, ZENG X, LU C, et al. Studying the mechanical responses of proteins using magnetic tweezers[J]. Nanotechnology, 2017, 28(414002): 1–11. DOI:10.1088/1361-6528/aa837e.
[44] SHON M J, RAH S H, YOON T Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers[J]. Science Advances, 2019, 5(1697): 1–12. DOI:10.1126/sciadv.aav1697.
[45] KLAUE D, SEIDEL R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field[J]. Physical Review Letters, 2009, 102(028302): 1–4. DOI:10.1103/PhysRevLett.102.028302.
[46] LE S, LIU R, LIM C T, et al. Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers[J/OL]. Methods, 2016, 94: 13–18. http://dx.doi.org/10.1016/j.ymeth.2015.08.020. DOI:10.1016/j.ymeth.2015.08.020.
[47] RIEU M, VIEILLE T, RADOU G, et al. Parallel, linear, and subnanometric 3D tracking of microparticles with stereo darkfield interferometry[J]. Science Advances, 2021, 7(6): 1–10. DOI:10.1126/sciadv.abe3902.
[48] DULIN D, BARLAND S, HACHAIR X, et al. Efficient illumination for microsecond tracking microscopy[J]. PLoS ONE, 2014, 9(9): 1–10. DOI:10.1371/journal.pone.0107335.
[49] DE VLAMINCK I, HENIGHAN T, VAN LOENHOUT M T J, et al. Highly parallel magnetic tweezers by targeted DNA tethering[J]. Nano Letters, 2011, 11(12): 5489–5493. DOI:10.1021/nl203299e.
[50] JIANG Y, LUO B, CHENG X. Enhanced thermal stability of thermoplastic polymer nanostructures for nanoimprint lithography[J]. Materials, 2019, 12(545): 1–12. DOI:10.3390/ma12030545.
修改评论