中文版 | English
题名

单分子磁镊技术的微纳化研究

其他题名
MINIATURIZATIONINVESTIGATION OF SINGLE-MOLECULE MAGNETIC TWEEZERS
姓名
姓名拼音
ZHU Tao
学号
12032667
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李毅
导师单位
深港微电子学院
论文答辩日期
2022-05-12
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

单分子磁镊技术通过磁场控制超顺磁珠小球对单分子施加机械力,并使用显微成像追踪磁珠小球,获得磁珠小球的三维位置信息,拟合单分子产生的机械形变。相较于其他单分子力谱技术,磁镊不需要高强度的辐照,可以应用于单个分子和活细胞,具有非侵入、三维操纵等优点,并允许对样品施加拉伸和扭曲作用力,被广泛应用在核酸和蛋白质的力学检测中。国内外课题组在研究生物问题过程中将单分子磁镊技术推广到各种应用场景,在实验设计和单分子动力学方面具有深刻见解。然而,就磁镊设备本身而言,在单一的微流道中难以实现高通量,且现有设备的速度和精度都有待提升。本研究基于目前的单分子磁镊系统,研究了磁镊芯片的制备和生化修饰方法,利用驱动电机改进了磁镊实验的自动化,比较和研究了磁镊明场成像系统与暗场成像系统的性能差异,并尝试使用纳米压印修饰磁镊芯片以提高实验通量。结果表明,芯片化的研究方式提升了磁镊实验的便携性,控制驱动电机移动位移台将磁镊实验过程整合为自主完成,使用实验脚本自动化可以矫正由单分子随机连接磁珠小球带来的z轴测量误差。通过改进激光照明透射式暗场成像系统可将系统z轴测量标准差由传统LED照明成像系统的5.8 nm降低至1.6 nm,提升了系统的测量精度。进一步改进反射式成像系统可以避免磁头对成像画面造成的影响,获得磁珠小球的拉伸实验数据。使用激光照明带来更高的亮度,将系统的采样速度由100 Hz提升至500 Hz,提升了磁镊设备的速度。纳米压印技术的引入将视野中的磁珠小球数量提升2-3倍,提高了实验通量。基于以上结果,本文还探讨了影响磁镊设备性能的因素,并提出了进一步改进磁镊设备性能的研究方向。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] NEUMAN K C, NAGY A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5(6): 491–505. DOI:10.1038/nmeth.1218.
[2] TINOCO I, BUSTAMANTE C. The effect of force on thermodynamics and kinetics of single molecule reactions[J]. Biophysical Chemistry, 2002, 101: 513–533. DOI:10.1016/S0301-4622(02)00177-1.
[3] OMORI R, KOBAYASHI T, SUZUKI A. Observation of a single-beam gradient-force optical trap for dielectric particles in air[J]. Optics Letters, 1997, 22(11): 816. DOI:10.1364/ol.22.000816.
[4] NEUMAN K C, BLOCK S M. Optical trapping[J]. Review of Scientific Instruments, 2004, 75(2787): 2787–2809. DOI:10.1063/1.1785844.
[5] SARKAR R, RYBENKOV V V. A guide to magnetic tweezers and their applications[J]. Frontiers in Physics, 2016, 4(48): 1–20. DOI:10.3389/fphy.2016.00048.
[6] LIPFERT J, KERSSEMAKERS J W J, JAGER T, et al. Magnetic torque tweezers: Measuring torsional stiffness in DNA and RecA-DNA filaments[J]. Nature Methods, 2010, 7(12): 977–980. DOI:10.1038/nmeth.1520.
[7] SHON M J, KIM H, YOON T Y. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension[J/OL]. Nature Communications, 2018, 9(3639): 1–12. http://dx.doi.org/10.1038/s41467-018-06122-3. DOI:10.1038/s41467-018-06122-3.
[8] STRICK T R, ALLEMAND J F, BENSIMON D, et al. The elasticity of a single supercoiled DNA molecule[J]. Science, 1996, 271(5257): 1835–1837. DOI:10.1126/science.271.5257.1835.
[9] TAPIA-ROJO R, ECKELS E C, FERNÁNDEZ J M. Ephemeral states in protein folding under force captured with a magnetic tweezers design[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7873–7878. DOI:10.1073/pnas.1821284116.
[10] LIONNET T, ALLEMAND J F, REVYAKIN A, et al. Single-molecule studies using magnetic traps[J]. Cold Spring Harbor Protocols, 2012, 7(067488): 34–49. DOI:10.1101/pdb.top067488.
[11] VAN LOENHOUT M T J, VAN DER HEIJDEN T, KANAAR R, et al. Dynamics of RecA filaments on single-stranded DNA[J]. Nucleic Acids Research, 2009, 37(12): 4089–4099. DOI:10.1093/nar/gkp326.
[12] ABELS J A, MORENO-HERRERO F, VAN DER HEIJDEN T, et al. Single-molecule measurements of the persistence length of double-stranded RNA[J/OL]. Biophysical Journal, 2005, 88(4): 2737–2744. http://dx.doi.org/10.1529/biophysj.104.052811. DOI:10.1529/biophysj.104.052811.
[13] MANOSAS M, XI X G, BENSIMON D, et al. Active and passive mechanisms of helicases[J]. Nucleic Acids Research, 2010, 38(16): 5518–5526. DOI:10.1093/nar/gkq273.
[14] KRUITHOF M, CHIEN F T, ROUTH A, et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber[J]. Nature Structural and Molecular Biology, 2009, 16(5): 534–540. DOI:10.1038/nsmb.1590.
[15] DE VLAMINCK I, VIDIC I, VAN LOENHOUT M T J, et al. Torsional regulation of hRPA-induced unwinding of double-stranded DNA[J]. Nucleic Acids Research, 2010, 38(12): 4133–4142. DOI:10.1093/nar/gkq067.
[16] KOSTER D A, CROQUETTE V, DEKKER C, et al. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB[J]. Nature, 2005, 434(7033): 671–674. DOI:10.1038/nature03395.
[17] KOSTER D A, CRUT A, SHUMAN S, et al. Cellular strategies for regulating DNA supercoiling: A single-molecule perspective[J]. Cell, 2010, 142(4): 519–530. DOI:10.1016/j.cell.2010.08.001.
[18] LAVELLE C. DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation[J]. Nature Structural and Molecular Biology, 2008, 15(2): 123–125. DOI:10.1038/nsmb0208-123.
[19] VAN DER HEIJDEN T, MODESTI M, HAGE S, et al. Homologous Recombination in Real Time: DNA Strand Exchange by RecA[J]. Molecular Cell, 2008, 30(4): 530–538. DOI:10.1016/j.molcel.2008.03.010.
[20] LE S, CHEN H, CONG P, et al. Mechanosensing of DNA bending in a single specific protein-DNA complex[J]. Scientific Reports, 2013, 3(3508): 1–6. DOI:10.1038/srep03508.
[21] WATANABE R, IINO R, NOJI H. Phosphate release in F1-ATPase catalytic cycle follows ADP release[J/OL]. Nature Chemical Biology, 2010, 6(11): 814–820. http://dx.doi.org/10.1038/nchembio.443. DOI:10.1038/nchembio.443.
[22] COLLINS C, GUILLUY C, WELCH C, et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway[J/OL]. Current Biology, 2012, 22(22): 2087–2094. http://dx.doi.org/10.1016/j.cub.2012.08.051. DOI:10.1016/j.cub.2012.08.051.
[23] MAHOWALD J, ARCIZET D, HEINRICH D. Impact of external stimuli and cell micro-architecture on intracellular transport states[J]. ChemPhysChem, 2009, 10(9–10): 1559–1566. DOI:10.1002/cphc.200900226.
[24] VAN LOENHOUT M T J, KERSSEMAKERS J W J, DE VLAMINCK I, et al. Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification[J/OL]. Biophysical Journal, 2012, 102(10): 2362–2371. http://dx.doi.org/10.1016/j.bpj.2012.03.073. DOI:10.1016/j.bpj.2012.03.073.
[25] GOSSE C, CROQUETTE V. Magnetic tweezers: Micromanipulation and force measurement at the molecular level[J/OL]. Biophysical Journal, 2002, 82(6): 3314–3329. http://dx.doi.org/10.1016/S0006-3495(02)75672-5. DOI:10.1016/S0006-3495(02)75672-5.
[26] HELL S, REINER G, CREMER C, et al. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[J]. Journal of Microscopy, 1993, 169(3): 391–405. DOI:10.1111/j.1365-2818.1993.tb03315.x.
[27] CNOSSEN J P, DULIN D, DEKKER N H. An optimized software framework for real-time, high-throughput tracking of spherical beads[J/OL]. Review of Scientific Instruments, 2014, 85(103712): 1–10. http://dx.doi.org/10.1063/1.4898178. DOI:10.1063/1.4898178.
[28] BUSTAMANTE C, CHEMLA Y R, MOFFITT J R. High-resolution dual-trap optical tweezers with differential detection: Managing environmental noise[J]. Cold Spring Harbor Protocols, 2009, 4(10): 1–4. DOI:10.1101/pdb.ip72.
[29] FIXMAN M, KOVAC J. Polymer conformational statistics. III. Modified Gaussian models of stiff chains[J]. Journal of Chemical Physics, 1973, 58(1564): 1564–1568. DOI:10.1063/1.1679396.
[30] STADLER M A, PASCUAL-LEONE A, GRAFMAN J, et al. Entropic elasticity of λ-phage DNA[J]. Science, 1994, 265(5178): 1599–1600. DOI:10.1126/science.8079176.
[31] BOUCHIAT C, WANG M D, ALLEMAND J F, et al. Estimating the persistence length of a worm-like chain molecule from force-extension measurements[J/OL]. Biophysical Journal, 1999, 76(1 I): 409–413. http://dx.doi.org/10.1016/S0006-3495(99)77207-3. DOI:10.1016/S0006-3495(99)77207-3.
[32] YU Z, DULIN D, CNOSSEN J, et al. A force calibration standard for magnetic tweezers[J/OL]. Review of Scientific Instruments, 2014, 85(12). http://dx.doi.org/10.1063/1.4904148. DOI:10.1063/1.4904148.
[33] TE VELTHUIS A J W, KERSSEMAKERS J W J, LIPFERT J, et al. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data[J/OL]. Biophysical Journal, 2010, 99(4): 1292–1302. http://dx.doi.org/10.1016/j.bpj.2010.06.008. DOI:10.1016/j.bpj.2010.06.008.
[34] CHEN H, FU H, ZHU X, et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA[J/OL]. Biophysical Journal, 2011, 100(2): 517–523. http://dx.doi.org/10.1016/j.bpj.2010.12.3700. DOI:10.1016/j.bpj.2010.12.3700.
[35] LIPFERT J, HAO X, DEKKER N H. Quantitative modeling and optimization of magnetic tweezers[J/OL]. Biophysical Journal, 2009, 96(12): 5040–5049. http://dx.doi.org/10.1016/j.bpj.2009.03.055. DOI:10.1016/j.bpj.2009.03.055.
[36] CHOI H K, MIN D, KANG H, et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway[J]. Science, 2019, 366(6469): 1150–1156. DOI:10.1126/science.aaw8208.
[37] ALONSO-CABALLERO A, ECHELMAN D J, TAPIA-ROJO R, et al. Protein folding modulates the chemical reactivity of a Gram-positive adhesin[J/OL]. Nature Chemistry, 2021, 13(2): 172–181. http://dx.doi.org/10.1038/s41557-020-00586-x. DOI:10.1038/s41557-020-00586-x.
[38] KACZMARCZYK A, MENG H, ORDU O, et al. Chromatin fibers stabilize nucleosomes under torsional stress[J/OL]. Nature Communications, 2020, 11(126): 1–12. http://dx.doi.org/10.1038/s41467-019-13891-y. DOI:10.1038/s41467-019-13891-y.
[39] WANG Z, MALUENDA J, GIRAUT L, et al. Detection of genetic variation and base modifications at base-pair resolution on both DNA and RNA[J/OL]. Communications Biology, 2021, 4(128): 1–14. http://dx.doi.org/10.1038/s42003-021-01648-7. DOI:10.1038/s42003-021-01648-7.
[40] YU M, ZHAO Z, CHEN Z, et al. Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains[J/OL]. Nature Communications, 2020, 11(4476): 1–12. http://dx.doi.org/10.1038/s41467-020-18323-w. DOI:10.1038/s41467-020-18323-w.
[41] LI X, WANG M, ZHENG W, et al. Dynamics of TRF1 organizing a single human telomere[J]. Nucleic acids research, 2021, 49(2): 760–775. DOI:10.1093/nar/gkaa1222.
[42] MA J B, CHEN Z, XU C H, et al. Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase[J]. Nucleic Acids Research, 2020, 48(6): 3156–3164. DOI:10.1093/nar/gkaa057.
[43] ZHAO X, ZENG X, LU C, et al. Studying the mechanical responses of proteins using magnetic tweezers[J]. Nanotechnology, 2017, 28(414002): 1–11. DOI:10.1088/1361-6528/aa837e.
[44] SHON M J, RAH S H, YOON T Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers[J]. Science Advances, 2019, 5(1697): 1–12. DOI:10.1126/sciadv.aav1697.
[45] KLAUE D, SEIDEL R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field[J]. Physical Review Letters, 2009, 102(028302): 1–4. DOI:10.1103/PhysRevLett.102.028302.
[46] LE S, LIU R, LIM C T, et al. Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers[J/OL]. Methods, 2016, 94: 13–18. http://dx.doi.org/10.1016/j.ymeth.2015.08.020. DOI:10.1016/j.ymeth.2015.08.020.
[47] RIEU M, VIEILLE T, RADOU G, et al. Parallel, linear, and subnanometric 3D tracking of microparticles with stereo darkfield interferometry[J]. Science Advances, 2021, 7(6): 1–10. DOI:10.1126/sciadv.abe3902.
[48] DULIN D, BARLAND S, HACHAIR X, et al. Efficient illumination for microsecond tracking microscopy[J]. PLoS ONE, 2014, 9(9): 1–10. DOI:10.1371/journal.pone.0107335.
[49] DE VLAMINCK I, HENIGHAN T, VAN LOENHOUT M T J, et al. Highly parallel magnetic tweezers by targeted DNA tethering[J]. Nano Letters, 2011, 11(12): 5489–5493. DOI:10.1021/nl203299e.
[50] JIANG Y, LUO B, CHENG X. Enhanced thermal stability of thermoplastic polymer nanostructures for nanoimprint lithography[J]. Materials, 2019, 12(545): 1–12. DOI:10.3390/ma12030545.

所在学位评定分委会
深港微电子学院
国内图书分类号
O439
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340132
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
朱涛. 单分子磁镊技术的微纳化研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032667-朱涛-南方科技大学-香(8120KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱涛]的文章
百度学术
百度学术中相似的文章
[朱涛]的文章
必应学术
必应学术中相似的文章
[朱涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。